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Preface

In this text, we provide the readers with the fundamentals of the finite element method
for heat and fluid flow problems. Most of the other available texts concentrate either on
conduction heat transfer or the fluid flow aspects of heat transfer. We have combined the
two to provide a comprehensive text for heat transfer engineers and scientists who would
like to pursue a finite element–based heat transfer analysis. This text is suitable for senior
undergraduate students, postgraduate students, engineers and scientists.

The first three chapters of the book deal with the essential fundamentals of both the heat
conduction and the finite element method. The first chapter deals with the fundamentals of
energy balance and the standard derivation of the relevant equations for a heat conduction
analysis. Chapter 2 deals with basic discrete systems, which are the fundamentals for the
finite element method. The discrete system analysis is supported with a variety of simple
heat transfer and fluid flow problems. The third chapter gives a complete account of the
finite element method and its relevant history. Several examples and exercises included in
Chapter 3 give the reader a full account of the theory and practice associated with the finite
element method.

The application of the finite element method to heat conduction problems are discussed
in detail in Chapters 4, 5 and 6. The conduction analysis starts with a simple one-dimensional
steady state heat conduction in Chapter 4 and is extended to multi-dimensions in Chapter 5.
Chapter 6 gives the transient solution procedures for heat conduction problems.

Chapters 7 and 8 deal with heat transfer by convection. In Chapter 7, heat transfer,
aided by the movement of a single-phase fluid, is discussed in detail. All the relevant
differential equations are derived from first principles. All the three types of convection
modes, forced, mixed and natural convection, are discussed in detail. Examples and com-
parisons are provided to support the accuracy and flexibility of the finite element method.
In Chapter 8, convection heat transfer is extended to flow in porous media. Some examples
and comparisons provide the readers an opportunity to access the accuracy of the methods
employed.

In Chapter 9, we have provided the readers with several examples, both benchmark and
application problems of heat transfer and fluid flow. The systematic approach of problem
solving is discussed in detail. Finally, Chapter 10 briefly introduces the topic of computer
implementation. The readers will be able to download the two-dimensional source codes
from the authors’ web sites. They will also be able to analyse both two-dimensional heat
conduction and heat convection studies on unstructured meshes using the downloaded
programs.
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Introduction

1.1 Importance of Heat Transfer

The subject of heat transfer is of fundamental importance in many branches of engineering.
A mechanical engineer may be interested in knowing the mechanisms of heat transfer
involved in the operation of equipment, for example boilers, condensers, air pre-heaters,
economizers, and so on, in a thermal power plant in order to improve their performance.
Nuclear power plants require precise information on heat transfer, as safe operation is an
important factor in their design. Refrigeration and air-conditioning systems also involve
heat-exchanging devices, which need careful design. Electrical engineers are keen to avoid
material damage due to hot spots, developed by improper heat transfer design, in electric
motors, generators and transformers. An electronic engineer is interested in knowing the
efficient methods of heat dissipation from chips and semiconductor devices so that they can
operate within safe operating temperatures. A computer hardware engineer is interested in
knowing the cooling requirements of circuit boards, as the miniaturization of computing
devices is advancing at a rapid rate. Chemical engineers are interested in heat transfer
processes in various chemical reactions. A metallurgical engineer would be interested
in knowing the rate of heat transfer required for a particular heat treatment process, for
example, the rate of cooling in a casting process has a profound influence on the quality
of the final product. Aeronautical engineers are interested in knowing the heat transfer rate
in rocket nozzles and in heat shields used in re-entry vehicles. An agricultural engineer
would be interested in the drying of food grains, food processing and preservation. A
civil engineer would need to be aware of the thermal stresses developed in quick-setting
concrete, the effect of heat and mass transfer on building and building materials and also the
effect of heat on nuclear containment, and so on. An environmental engineer is concerned
with the effect of heat on the dispersion of pollutants in air, diffusion of pollutants in soils,
thermal pollution in lakes and seas and their impact on life. The global, thermal changes
and associated problems caused by El Nino are very well known phenomena, in which
energy transfer in the form of heat exists.

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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The previously-mentioned examples are only a sample of heat transfer applications to
name but a few. The solar system and the associated energy transfer are the principal
factors for existence of life on earth. It is not untrue to say that it is extremely difficult,
often impossible, to avoid some form of heat transfer in any process on earth.

The study of heat transfer provides economical and efficient solutions for critical prob-
lems encountered in many engineering items of equipment. For example, we can consider
the development of heat pipes that can transport heat at a much greater rate than copper or
silver rods of the same dimensions, even at almost isothermal conditions. The development
of present day gas turbine blades, in which the gas temperature exceeds the melting point of
the material of the blade, is possible by providing efficient cooling systems and is another
example of the success of heat transfer design methods. The design of computer chips,
which encounter heat flux of the order occurring in re-entry vehicles, especially when the
surface temperature of the chips is limited to less than 100 ◦C, is again a success story for
heat transfer analysis.

Although there are many successful heat transfer designs, further developments are still
necessary in order to increase the life span and efficiency of the many devices discussed
previously, which can lead to many more new inventions. Also, if we are to protect our
environment, it is essential to understand the many heat transfer processes involved and, if
necessary, to take appropriate action.

1.2 Heat Transfer Modes

Heat transfer is that section of engineering science that studies the energy transport between
material bodies due to a temperature difference (Bejan 1993; Holman 1989; Incropera and
Dewitt 1990; Sukhatme 1992). The three modes of heat transfer are

1. Conduction

2. Convection

3. Radiation.

The conduction mode of heat transport occurs either because of an exchange of energy
from one molecule to another, without the actual motion of the molecules, or because of
the motion of the free electrons if they are present. Therefore, this form of heat transport
depends heavily on the properties of the medium and takes place in solids, liquids and
gases if a difference in temperature exists.

Molecules present in liquids and gases have freedom of motion, and by moving from
a hot to a cold region, they carry energy with them. The transfer of heat from one region
to another, due to such macroscopic motion in a liquid or gas, added to the energy transfer
by conduction within the fluid, is called heat transfer by convection. Convection may be
free, forced or mixed. When fluid motion occurs because of a density variation caused by
temperature differences, the situation is said to be a free, or natural, convection. When
the fluid motion is caused by an external force, such as pumping or blowing, the state is
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defined as being one of forced convection. A mixed convection state is one in which both
natural and forced convections are present. Convection heat transfer also occurs in boiling
and condensation processes.

All bodies emit thermal radiation at all temperatures. This is the only mode that does
not require a material medium for heat transfer to occur. The nature of thermal radiation
is such that a propagation of energy, carried by electromagnetic waves, is emitted from the
surface of the body. When these electromagnetic waves strike other body surfaces, a part
is reflected, a part is transmitted and the remaining part is absorbed.

All modes of heat transfer are generally present in varying degrees in a real physical
problem. The important aspects in solving heat transfer problems are identifying the sig-
nificant modes and deciding whether the heat transferred by other modes can be neglected.

1.3 The Laws of Heat Transfer

It is important to quantify the amount of energy being transferred per unit time and for that
we require the use of rate equations.

For heat conduction, the rate equation is known as Fourier’s law, which is expressed
for one dimension as

qx = −k
dT

dx
(1.1)

where qx is the heat flux in the x direction (W/m2); k is the thermal conductivity (W/mK,
a property of material, see Table 1.1)and dT /dx is the temperature gradient (K/m).

For convective heat transfer, the rate equation is given by Newton’s law of cooling as

q = h(Tw − Ta) (1.2)

where q is the convective heat flux; (W/m2); (Tw − Ta) is the temperature difference
between the wall and the fluid and h is the convection heat transfer coefficient, (W/m2K)
(film coefficient, see Table 1.2).

The convection heat transfer coefficient frequently appears as a boundary condition in
the solution of heat conduction through solids. We assume h to be known in many such
problems. In the analysis of thermal systems, one can again assume an appropriate h if not
available (e.g., heat exchangers, combustion chambers, etc.). However, if required, h can
be determined via suitable experiments, although this is a difficult option.

The maximum flux that can be emitted by radiation from a black surface is given by
the Stefan–Boltzmann Law, that is,

q = σTw
4 (1.3)

where q is the radiative heat flux, (W/m2); σ is the Stefan–Boltzmann constant (5.669 ×
10−8), in W/m2K4 and Tw is the surface temperature, (K).

The heat flux emitted by a real surface is less than that of a black surface and is given by
q = εσTw

4 (1.4)
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Table 1.1 Typical values of thermal conductivity of some materials
in W/mK at 20 ◦C

Material Thermal conductivity

Metals :
Pure silver 410
Pure copper 385
Pure aluminium 200
Pure iron 73

Alloys :
Stainless steel (18% Cr, 8% Ni) 16
Aluminium alloy (4.5% Cr) 168

Non metals :
Plastics 0.6
Wood 0.2

Liquid :
Water 0.6

Gases :
Dry air 0.025 (at atmospheric pressure)

Table 1.2 Typical values of heat
transfer coefficient in W/m2K

Gases (stagnant) 15
Gases (flowing) 15–250
Liquids (stagnant) 100
Liquids (flowing) 100–2000
Boiling liquids 2000–35,000
Condensing vapours 2000–25,000

where ε is the radiative property of the surface and is referred to as the emissivity. The net
radiant energy exchange between any two surfaces 1 and 2 is given by

Q = FεFGσA1(T
4
1 − T 4

2 ) (1.5)

where Fε is a factor that takes into account the nature of the two radiating surfaces; FG is
a factor that takes into account the geometric orientation of the two radiating surfaces and
A1 is the area of surface 1.

When a heat transfer surface, at temperature T1, is completely enclosed by a much
larger surface at temperature T2, the net radiant exchange can be calculated by

Q = qA1 = ε1σA1(T
4
1 − T 4

2 ) (1.6)
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With respect to the laws of thermodynamics, only the first law is of interest in heat
transfer problems. The increase of energy in a system is equal to the difference between
the energy transfer by heat to the system and the energy transfer by work done on the
surroundings by the system, that is,

dE = dQ − dW (1.7)

where Q is the total heat entering the system and W is the work done on the surroundings.
Since we are interested in the rate of energy transfer in heat transfer processes, we can
restate the first law of thermodynamics as

‘The rate of increase of the energy of the system is equal to the difference between the
rate at which energy enters the system and the rate at which the system does work on the
surroundings’, that is,

dE

dt
= dQ

dt
− dW

dt
(1.8)

where t is the time.

1.4 Formulation of Heat Transfer Problems

In analysing a thermal system, the engineer should be able to identify the relevant heat
transfer processes and only then can the system behaviour be properly quantified. In this
section, some typical heat transfer problems are formulated by identifying appropriate heat
transfer mechanisms.

1.4.1 Heat transfer from a plate exposed to solar heat flux

Consider a plate of size L × B × d exposed to a solar flux of intensity qs, as shown in
Figure 1.1. In many solar applications such as a solar water heater, solar cooker and so
on, the temperature of the plate is a function of time. The plate loses heat by convection
and radiation to the ambient air, which is at a temperature Ta. Some heat flows through
the plate and is convected to the bottom side. We shall apply the law of conservation of
energy to derive an equation, the solution of which gives the temperature distribution of
the plate with respect to time.

Heat entering the top surface of the plate:

qsAT (1.9)

Heat loss from the plate to surroundings:

Top surface:

hAT(T − Ta) + εσAT(T 4 − T 4
a ) (1.10)

Side surface:

hAS(T − Ta) + εσAS(T
4 − T 4

a ) (1.11)
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qs

d

B

L

Figure 1.1 Heat transfer from a plate subjected to solar heat flux

Bottom surface:

hAB(T − Ta) + εσAB(T 4 − T 4
a ) (1.12)

where the subscripts T, S and B are respectively the top, side and bottom surfaces. The
subject of radiation exchange between a gas and a solid surface is not simple. Read-
ers are referred to other appropriate texts for further details (Holman 1989; Siegel and
Howell 1992). Under steady state conditions, the heat received by the plate is lost to the
surroundings, thus

qsAT = hAT(T − Ta) + εσAT(T 4 − T 4
a ) + hAS(T − Ta)

+ εσAS(T
4 − T 4

a ) + hAB(T − Ta) + εσAB(T 4 − T 4
a ) (1.13)

This is a nonlinear algebraic equation (because of the presence of the T 4 term). The
solution of this equation gives the steady state temperature of the plate. If we want to
calculate the temperature of the plate as a function of time, t , we have to consider the rate
of rise in the internal energy of the plate, which is

(Volume) ρcp
dT

dt
= (LBd)ρcp

dT

dt
(1.14)

where ρ is the density and cp is the specific heat of the plate. Thus, at any instant of time,
the difference between the heat received and lost by the plate will be equal to the heat
stored (Equation 1.14). Thus,

(LBd)ρcp
dT

dt
= qsAT − [hAT(T − Ta) + εσAT(T 4 − T 4

a ) + hAS(T − Ta)

+ εσAS(T 4 − T 4
a ) + hAB(T − Ta) + εσAB(T 4 − T 4

a )] (1.15)

This is a first-order nonlinear differential equation, which requires an initial condition,
namely,

t = 0, T = Ta (1.16)
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The solution is determined iteratively because of the nonlinearity of the problem.
Equation 1.15 can be simplified by substituting relations for the surface areas. It should be
noted, however, that this is a general equation that can be used for similar systems.

It is important to note that the spatial variation of temperature within the plate is
neglected here. However, this variation can be included via Fourier’s law of heat conduc-
tion, that is, Equation 1.1. Such a variation is necessary if the plate is not thin enough to
reach equilibrium instantly.

1.4.2 Incandescent lamp

Figure 1.2 shows an idealized incandescent lamp. The filament is heated to a temperature
of Tf by an electric current. Heat is convected to the surrounding gas and is radiated to the
wall, which also receives heat from the gas by convection. The wall in turn convects and
radiates heat to the ambient at Ta. A formulation of equations, based on energy balance,
is necessary in order to determine the temperature of the gas and the wall with respect to
time.

Gas:
Rise in internal energy of gas:

mgcpg
dTg

dt
(1.17)

Convection from filament to gas:

hfAf(Tf − Tg) (1.18)

Convection from gas to wall:

hgAg(Tg − Tw) (1.19)

Radiation from filament to gas:

εfAfσ(T 4
f − T 4

g ) (1.20)

Gas

Glass bulb

Filament

Figure 1.2 Energy balance in an incandescent light source
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Now, the energy balance for gas gives

mgcpg
dTg

dt
= hfAg(Tf − Tg) − hgAg(Tg − Tw) + εfAfσ(T 4

f − T 4
g ) (1.21)

Wall:

Rise in internal energy of wall:

mwcpw
dTw

dt
(1.22)

Radiation from filament to wall:

εfσAf(T
4

f − T 4
w) (1.23)

Convection from wall to ambient:

hwAw(Tw − Ta) (1.24)

Radiation from wall to ambient:

εwσAw(T 4
w − T 4

a ) (1.25)

Energy balance for wall gives

mwcpw
dTw

dt
= hgAg(Tg − Tw) + εfσAf(T

4
f − T 4

w) − hwAw(Tw − Ta) − εwσAw(T 4
w − T 4

a )

(1.26)
where mg is the mass of the gas in the bulb; cpg, the specific heat of the gas; mw, the mass
of the wall of the bulb; cpw, the specific heat of the wall; hf, the heat transfer coefficient
between the filament and the gas; hg, the heat transfer coefficient between the gas and wall;
hw, the heat transfer coefficient between the wall and ambient and ε is the emissivity. The
subscripts f, w, g and a respectively indicate filament, wall, gas and ambient.

Equations 1.21 and 1.26 are first-order nonlinear differential equations. The initial con-
ditions required are as follows:

At t = 0,

Tg = Ta and Tw = Ta (1.27)

The simultaneous solution of Equations 1.21 and 1.26, along with the above initial
condition results in the temperatures of the gas and wall as a function of time.

1.4.3 Systems with a relative motion and internal heat generation

The extrusion of plastics, drawing of wires and artificial fibres (optical fibre), suspended
electrical conductors of various shapes, continuous casting etc. can be treated alike.

In order to derive an energy balance for such a system, we consider a small differential
control volume of length, �x, as shown in Figure 1.3. In this problem, the heat lost to
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∆x x

x + dx

m ex

u

m ex +dx

qx +dx

qx

h P ∆x (T − Ta)

Figure 1.3 Conservation of energy in a moving body

the environment by radiation is assumed to be negligibly small. The energy is conducted,
convected and transported with the material in motion. With reference to Figure 1.3, we
can write the following equations of conservation of energy, that is,

qx + mex + GA�x = qx+dx + mex+dx + hP�x(T − Ta) (1.28)

where m is the mass flow, ρAu which is assumed to be constant; ρ, the density of the
material; A, the cross-sectional area; P , the perimeter of the control volume; G, the heat
generation per unit volume and u, the velocity at which the material is moving. Using a
Taylor series expansion, we obtain

m(ex − ex+dx) = −m
dex

dx
�x = −mcp

dT

dx
�x (1.29)

Note that dex = cpdT at constant pressure. Similarly, using Fourier’s law
(Equation 1.1),

qx − qx+dx = d

dx

[
kA

dT

dx

]
(1.30)

Substituting Equations 1.29 and 1.30 into Equation 1.28, we obtain the following con-
servation equation:

d

dx

[
kA

dT

dx

]
− hP(T − Ta) − ρcpAu

dT

dx
+ GA = 0 (1.31)
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In the above equation, the first term is derived from the heat diffusion (conduction)
within the material, the second term is due to convection from the material surface to
ambient, the third term represents the heat transport due to the motion of the material and
finally the last term is added to account for heat generation within the body.

1.5 Heat Conduction Equation

The determination of temperature distribution in a medium (solid, liquid, gas or combination
of phases) is the main objective of a conduction analysis, that is, to know the temperature
in the medium as a function of space at steady state and as a function of time during
the transient state. Once this temperature distribution is known, the heat flux at any point
within the medium, or on its surface, may be computed from Fourier’s law, Equation 1.1.
A knowledge of the temperature distribution within a solid can be used to determine the
structural integrity via a determination of the thermal stresses and distortion. The optimiza-
tion of the thickness of an insulating material and the compatibility of any special coatings
or adhesives used on the material can be studied by knowing the temperature distribution
and the appropriate heat transfer characteristics.

We shall now derive the conduction equation in Cartesian coordinates by applying
the energy conservation law to a differential control volume as shown in Figure 1.4. The
solution of the resulting differential equation, with prescribed boundary conditions, gives
the temperature distribution in the medium.

∆x

∆y

Qy + ∆y

Qy

Qz

Qx
Qx + ∆x

Qz + ∆z

∆z

x

y
z

Figure 1.4 A differential control volume for heat conduction analysis
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A Taylor series expansion results in

Qx+dx = Qx + ∂Qx

∂x
�x

Qy+dy = Qy + ∂Qy

∂y
�y

Qz+dz = Qz + ∂Qz

∂z
�z (1.32)

Note that the second- and higher-order terms are neglected in the above equation. The
heat generated in the control volume is G�x�y�z and the rate of change in energy storage
is given as

ρ�x�y�zcp
∂T

∂t
(1.33)

Now, with reference to Figure 1.4, we can write the energy balance as

inlet energy + energy generated = energy stored + exit energy

that is,

G�x�y�z + Qx + Qy + Qz = ρ�x�y�z
∂T

∂t
+ Qx+dx + Qy+dy + Qz+dz (1.34)

Substituting Equation 1.32 into the above equation and rearranging results in

−∂Qx

∂x
�x − ∂Qy

∂y
�y − ∂Qz

∂z
�z + G�x�y�z = ρcp�x�y�z

∂T

∂t
(1.35)

The total heat transfer Q in each direction can be expressed as

Qx = �y�zqx = −kx�y�z
∂T

∂x

Qy = �x�zqy = −ky�x�z
∂T

∂y

Qz = �x�yqz = −kz�x�y
∂T

∂z
(1.36)

Substituting Equation 1.36 into Equation 1.35 and dividing by the volume, �x�y�z,
we get

∂

∂x

[
kx

∂T

∂x

]
+ ∂

∂y

[
ky

∂T

∂y

]
+ ∂

∂z

[
kz

∂T

∂y

]
+ G = ρcp

∂T

∂t
(1.37)

Equation 1.37 is the transient heat conduction equation for a stationary system expressed
in Cartesian coordinates. The thermal conductivity, k, in the above equation is a vector. In
its most general form, the thermal conductivity can be expressed as a tensor, that is,

k =

 kxx kxy kxz

kyx kyy kyz

kzx kzy kzz


 (1.38)
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The preceding equations, that is, 1.37 and 1.38 are valid for solving heat conduction
problems in anisotropic materials with a directional variation in the thermal conductivities.
In many situations, however, the thermal conductivity can be taken as a non-directional
property, that is, isotropic. In such materials, the heat conduction equation is written as
(constant thermal conductivity)

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
+ G

k
= 1

α

∂T

∂t
(1.39)

where α = k/ρcp is the thermal diffusivity, which is an important parameter in transient
heat conduction analysis.

If the analysis is restricted only to steady state heat conduction with no heat generation,
the equation is reduced to

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= 0 (1.40)

For a one-dimensional case, the steady state heat conduction equation is further
reduced to

d

dx

(
k

dT

dx

)
= 0 (1.41)

The heat conduction equation for a cylindrical coordinate system is given by

1

r

∂

∂r

[
krr

∂T

∂r

]
+ 1

r2

∂

∂φ

[
kφ

∂T

∂φ

]
+ ∂

∂z

[
kz

∂T

∂z

]
+ G = ρcp

∂T

∂t
(1.42)

where the heat fluxes can be expressed as

qr = −kr

∂T

∂r

qφ = −kφ

r

∂T

∂φ

qz = −kz

∂T

∂z
(1.43)

The heat conduction equation for a spherical coordinate system is given by

1

r2

∂

∂r

[
krr

2 ∂T

∂r

]
+ 1

r2 sin2 θ

∂

∂φ

[
kφ

∂T

∂φ

]
+ 1

r2 sin θ

∂

∂θ

[
kθ sin θ

∂T

∂θ

]
+ G = ρcp

∂T

∂t

(1.44)
where the heat fluxes can be expressed as

qr = −kr

∂T

∂r

qφ = − kφ

r sin θ

∂T

∂φ

qθ = −kθ

r

∂T

∂θ
(1.45)

It should be noted that for both cylindrical and spherical coordinate systems,
Equations 1.42 and 1.44 can be derived in a similar fashion as for Cartesian coordinates
by considering the appropriate differential control volumes.
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1.6 Boundary and Initial Conditions

The heat conduction equations, discussed in Section 1.5, will be complete for any prob-
lem only if the appropriate boundary and initial conditions are stated. With the necessary
boundary and initial conditions, a solution to the heat conduction equations is possible.
The boundary conditions for the conduction equation can be of two types or a combination
of these—the Dirichlet condition, in which the temperature on the boundaries is known
and/or the Neumann condition, in which the heat flux is imposed (see Figure 1.5):

Dirichlet condition

T = T0 on 	T (1.46)

Neumann condition

q = −k
∂T

∂n
= C on 	qf (1.47)

In Equations 1.46 and 1.47, T0 is the prescribed temperature; 	 the boundary surface; n is
the outward direction normal to the surface and C is the constant flux given. The insulated,
or adiabatic, condition can be obtained by substituting C = 0. The convective heat transfer
boundary condition also falls into the Neumann category and can be expressed as

−k
∂T

∂n
= h(Tw − Ta) on 	qc (1.48)

It should be observed that the heat conduction equation has second-order terms and
hence requires two boundary conditions. Since time appears as a first-order term, only one
initial value (i.e., at some instant of time all temperatures must be known) needs to be
specified for the entire body, that is,

T = T0 all over the domain 
 at t = t0 (1.49)

where t0 is a reference time.
The constant, or variable temperature, conditions are generally easy to implement as

temperature is a scalar. However, the implementation of surface fluxes is not as straight-

ΓT

Ω

Γqf

Γqc

Figure 1.5 Boundary conditions
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forward. Equation 1.47 can be rewritten with the direction cosines of the outward nor-
mals as

kx

∂T

∂x
l̃ + ky

∂T

∂y
m̃ + kz

∂T

∂z
ñ = C on 	qf (1.50)

Similarly, Equation 1.48 can be rewritten as

kx

∂T

∂x
l̃ + ky

∂T

∂y
m̃ + kz

∂T

∂z
ñ = h(T − Ta) on 	qc (1.51)

where l̃, m̃ and ñ are the direction cosines of the appropriate outward surface normals.
In many industrial applications, for example, wire drawing, crystal growth, continuous

casting, and so on, the material will have a motion in space, and this motion may be
restricted to one direction, as in the example (Section 1.4.3) cited previously. The general
energy equation for heat conduction, taking into account the spatial motion of the body is
given by

∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
+ ∂

∂z

(
kz

∂T

∂z

)
+ G = ρcp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
(1.52)

where u, v and w are the components of the velocity in the three directions, x, y and z

respectively.
The governing equations for convection heat transfer are very similar to the above and

will be discussed in Chapter 7.

1.7 Solution Methodology

Although a number of analytical solutions for conduction heat transfer problems are avail-
able (Carslaw and Jaeger 1959; Ozisik 1968), in many practical situations, the geometry
and the boundary conditions are so complex that an analytical solution is not possible.
Even if one could develop analytical relations for such complicated cases, these will
invariably involve complex series solutions and would thus be practically difficult to imple-
ment. In such situations, conduction heat transfer problems do need a numerical solution.
Some commonly employed numerical methods are the Finite Difference (Ozisik and Czisik
1994), Finite Volume (Patankar 1980), Finite Element and Boundary Elements (Ibanez and
Power 2002) techniques. This text will address the issues related to the Finite Element
Method (FEM) only (Comini et al. 1994; Huang and Usmani 1994; Lewis et al. 1996;
Reddy and Gartling 2000).

In contrast to an analytical solution that allows for the temperature determination at any
point in the medium, a numerical solution enables the determination of temperature only
at discrete points. The first step in any numerical analysis must therefore be to select these
points. This is done by dividing the region of interest into a number of smaller regions.
These regions are bounded by points. These reference points are termed nodal points and
their assembly results in a grid or mesh. It is important to note that each node represents a
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certain region surrounding it, and its temperature is a measure of the temperature distribution
in that region. The numerical accuracy of these calculations depends strongly on the number
of designated nodal points, which control the number of elements generated. The accuracy
approaches an exact value as the mesh size (region size) approaches zero.

Further details on the numerical methods, for example, accuracy and error will be
discussed in later chapters.

1.8 Summary

In this chapter, the subject of heat transfer was introduced and various modes of heat trans-
port were discussed. The fundamentals of energy conservation principles and the application
of such principles to some selected problems were also presented. Finally, the general heat
conduction equations in multi-dimensions were derived and the appropriate boundary and
initial conditions were given. Although brief, we trust that this chapter gives the reader
the essential fundamental concepts involved in heat transfer in general and some detailed
understanding of conduction heat transfer in particular.

1.9 Exercise

Exercise 1.9.1 Extend the problem formulation of the plate subjected to a solar heat flux in
Section 1.4.1 for a square plate. Assume the bottom surface of the plate is insulated.

Exercise 1.9.2 Repeat the incandescent lamp problem of Section 1.4.2 but now assume that
the light source is within an enclosure (room). Assume that the enclosure is also participating
in conserving energy.

Exercise 1.9.3 Derive the energy balance equations for a rectangular fin of variable cross
section as shown in Figure 1.6. The fin is stationary and is attached to a hot heat source.
(Hint: This is similar to the problem given in Section (1.4.3), but without relative motion).

Exercise 1.9.4 Consider the respective control volumes in both cylindrical and spheri-
cal coordinates and derive the respective heat conduction equations. Verify these against
Equations 1.42 and 1.44.

Exercise 1.9.5 The inner body temperature of a healthy person remains constant at 37 ◦C,
while the temperature and humidity of the environment change. Explain, via heat transfer
mechanisms between the human body and the environment, how the human body keeps itself
cool in summer and warm in winter.

Exercise 1.9.6 Discuss the modes of heat transfer that determine the equilibrium temper-
ature of a space shuttle when it is in orbit. What happens when it re-enters the earth’s
atmosphere?

Exercise 1.9.7 A closed plastic container, used to serve coffee in a seminar room, is made of
two layers with an air gap placed between them. List all heat transfer processes associated
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Figure 1.6 Rectangular fin

with the cooling of the coffee in the inner plastic vessel. What steps do you consider necessary
for a better container design so as to reduce the heat loss to ambient.

Exercise 1.9.8 A square chip of size 8 mm is mounted on a substrate with the top surface
being exposed to a coolant flow at 20 ◦C. All other surfaces of the chip are insulated. The
chip temperature must not exceed 80 ◦C in order for the chip to function properly. Determine
the maximum allowable power that can be applied to the chip if the coolant is air with a heat
transfer coefficient of 250 W/m2K. If the coolant is a dielectric liquid with a heat transfer
coefficient of 2500 W/m2K, how much additional power can be dissipated as compared to
air cooling?

Exercise 1.9.9 Consider a person standing in a room that is at a temperature of 21 ◦C.
Determine the total heat rate from this person if the exposed surface area of the person is
1.6 m2 and the average outer surface temperature of the person is 30 ◦C. The convection
coefficient from the surface of the person is 5 W/m2 ◦C. What is the effect of radiation if the
emissivity of the surface of the person is 0.90?

Exercise 1.9.10 A thin metal plate has one large insulated surface and another large surface
exposed to solar radiation at a rate of 600 W/m2. The surrounding air temperature is 20 ◦C.
Determine the equilibrium surface temperature of the plate if the convection heat transfer
coefficient from the plate surface is 20 W/m2K and the emissivity of the top surface of the
plate is 0.8.
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Exercise 1.9.11 A long, thin copper wire of radius r and length L has an electrical resis-
tance of ρ per unit length. The wire is initially kept at a room temperature of Ta and subjected
to an electric current flow of I . The heat generation due to the current flow is simultaneously
lost to the ambient by convection. Set up an equation to determine the temperature of the
wire as a function of time. Mention the assumptions made in the derivation of the equation.

Exercise 1.9.12 In a continuous casting machine, the billet moves at a rate of u m/s. The hot
billet is exposed to an ambient temperature of Ta . Set up an equation to find the temperature
of the billet as a function of time in terms of the pertinent parameters. Assume that radiation
also plays a role in the dissipation of heat to ambient.

Exercise 1.9.13 In a double-pipe heat exchanger, hot fluid (mass flow M kg/s and specific
heat c kJ/kg ◦C) flows inside a pipe and cold fluid (mass flow m kg/s and specific heat c

kJ/kg ◦C) flows outside in the annular space. The hot fluid enters the heat exchanger at
Th1 and leaves at Th2, whereas the cold fluid enters at Tc1 and leaves at Tc2. Set up the
differential equation to determine the temperature variation (along the heat exchanger) for
hot and cold fluids.
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2

Some Basic Discrete Systems

2.1 Introduction

Many engineering systems may be simplified by subdividing them into components or
elements. These elements can readily be analysed from first principles, and by assembling
these together, the analysis of a full original system can be reconstructed. We refer to
such systems as discrete systems. In a large number of situations, a reasonably adequate
model can be obtained using a finite number of well-defined components. This chapter
discusses the application of such techniques for the formulation of certain heat and fluid
flow problems. The problems presented here provide a valuable basis for the discussion of
the finite element method (Bathe 1982; Huebner and Thornton 1982; Hughes 2000; Reddy
1993; Segerlind 1984; Zienkiewicz and Taylor 2000), which is presented in subsequent
chapters.

In the analysis of a discrete system, the actual system response is described directly
by the solution of a finite number of unknowns. However, a continuous system is one
in which a continuum is described by complex differential equations. In other words, the
system response is described by an infinite number of unknowns. It is often difficult to
obtain an exact solution for a continuum problem and therefore standard numerical methods
are required.

If the characteristics of a problem can be represented by relatively simplified equations,
it can be analysed employing a finite number of components and simple matrices as shown
in the following sections of this chapter. Such procedures reduce the continuous system to
an idealization that can be analysed as a discrete physical system. In reality, an important
preliminary study to be made by the engineer is whether an engineering system can be
treated as discrete or continuous.

If a system is to be analysed using complex governing differential equations, then
one has to make a decision on how these equations can be discretized by an appropriate
numerical method. Such a system is a refined version of discrete systems, and the accuracy
of the solution can be controlled by changing the number of unknowns and elements. The

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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importance of the finite element method finds a place here, that is, finite element techniques,
in conjunction with the digital computer, have enabled the numerical idealization and
solution of continuous systems in a systematic manner. This in effect has made possible
the practical extension and application of classical procedures to very complex engineering
systems.

We deal here with some basic discrete, or lumped-parameter systems, that is, systems
with a finite number of degrees of freedom. The steps in the analysis of a discrete system
are as follows:

Step 1: Idealization of system: System is idealized as an assembly of elements
Step 2: Element characteristics : The characteristics of each element, or component, is found
in terms of the primitive variables
Step 3: Assembly : A set of simultaneous equations is formed via assembly of element
characteristics for the unknown state variables
Step 4: Solution of equations: The simultaneous equations are solved to determine all the
primitive variables on a selected number of points.

We consider in the following sections some heat transfer and fluid flow problems.
The same procedure can be extended to structural, electrical and other problems, and the
interested reader is referred to other finite element books listed at the end of this chapter.

2.2 Steady State Problems

2.2.1 Heat flow in a composite slab

Consider the heat flow through a composite slab under steady state conditions as shown in
Figure 2.1. The problem is similar to that of a roof slab subjected to solar flux on the left-
hand face. This is subjected to a constant flux q W/m2 and the right-hand face is subjected
to a convection environment. We are interested in determining the temperatures T1, T2 and
T3 at nodes 1, 2 and 3 respectively.

The steady state heat conduction equation for a one-dimensional slab with a constant
thermal conductivity is given by Equation 1.41, that is,

d2T

dx2
= 0 (2.1)

Integration of the above equation yields the following temperature gradient and tem-
perature distribution:

dT

dx
= a (2.2)

and
T = ax + b (2.3)

Consider a homogeneous slab of thickness L with the following boundary conditions
(in one dimension):

At x = 0, T = T1 and At x = L, T = T2 (2.4)
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h,  Taq

L1 L2

211 2 3

− Node

− Element

Element 1

k1 k2

Element 2

Figure 2.1 Heat transfer through a composite slab

Substitution of the boundary conditions, Equation 2.4, gives

c = T1 and a = T2 − T1

L
(2.5)

The heat flux can be calculated from Equation 2.3 as

q = −k
dT

dx
= −k

T2 − T1

L
(2.6)

or, the total heat flow is expressed as

Q = qA = −kA
T2 − T1

L
(2.7)

where A is the area perpendicular to the direction of heat flow.
The total heat flow will be constant at any section perpendicular to the heat flow

direction (conservation of energy) if the height and breadth are infinitely long (i.e., one-
dimensional heat flow). Applying the above principle to the composite slab shown in
Figure 2.1 results in the following heat balance equations at different nodes:
at node 1

qA = k1A
T1 − T2

L1
(2.8)

at node 2

k1A
T1 − T2

L1
= k2A

T2 − T3

L2
(2.9)

at node 3

k2A
T2 − T3

L2
= hA(T3 − Ta) (2.10)
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where h is the heat transfer coefficient and Ta is the ambient temperature. We can rearrange
the previous three equations as follows:

k1A

L1
T1 − k1A

L1
T2 = qA

−k1A

L1
T1 +

[
k1A

L1
+ k2A

L2

]
T2 − k2A

L2
T3 = 0

−k2A

L2
T2 +

[
k2A

L2
+ hA

]
T3 = hAT a (2.11)

The above equation can be rewritten in matrix form as


k1A

L1

−k1A

L1
0

−k1A

L1

[
k1A

L1
+ k2A

L2

] −k2A

L2

0
−k2A

L2

[
k2A

L2
+ hA

]







T1

T2

T3


 =




qA

0
hATa


 (2.12)

or
[K]{T} = {f} (2.13)

The solution of Equation 2.13 gives the unknown temperatures T1, T2 and T3. In the
case of heat conduction, there is only one degree of freedom at each node as temperature
is a scalar. The following important features of Equation 2.13 should be observed.

• The characteristics of each layer of the slab for heat conduction can be written as

kA

L

[
1 −1

−1 1

]{
Ti

Tj

}
=
{

Q

−Q

}
(2.14)

• where Q is the total heat flow and is constant.

• The global stiffness matrix [K] can be obtained by assembling the stiffness matrices
of each layer and the result is a symmetric and positive definite matrix.

• The effect of the heat flux boundary condition appears only in the loading terms {f}.
• The convective heat transfer effect appears both in the stiffness matrix and the loading

vector.

• The thermal force vector consists of known values. The method of assembly can be
extended to more than two layers of insulation.

• The effect of natural boundary conditions (flux boundary conditions) is evident at
the formulation stage.

In summary, if [K] and {f} can be formed, then the temperature distribution can be
determined by any standard matrix solution procedure.
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Figure 2.2 Fluid flow network

2.2.2 Fluid flow network

Many practical problems require a knowledge of flow in various circuits, for example
water distribution systems, ventilation ducts in electrical machines (including transformers),
electronic cooling systems, internal passages in gas turbine blades, and so on. In the cooling
of electrical machines and electronic components, it is necessary to determine the heat
transfer coefficients of the cooling surfaces, which are dependent on the mass flow of
air on those surfaces. In order to illustrate the flow calculations in each circuit, laminar
incompressible flow is considered in the network of circular pipes 1 as shown in Figure 2.2.
If a quantity Q m3/s of fluid enters and leaves the pipe network, it is necessary to compute
the fluid nodal pressures and the volume flow rate in each pipe. We shall make use of a
four-element and three-node model as shown in Figure 2.2.

The fluid resistance for an element is written as (Poiseuille flow (Shames 1982))

Rk = 128Lµ

πD4
(2.15)

where L is the length of the pipe section; D, the diameter of the pipe section and µ, the
dynamic viscosity of the fluid and the subscript k, indicates the element number. The mass
flux rate entering and leaving an element can be written as

qi = 1

Rk

(pi − pj ) and qj = 1

Rk

(pj − pi) (2.16)

where p is the pressure, q is the mass flux rate and the subscripts i and j indicate the two
nodes of an element.

The characteristics of the element, thus, can be written as

1

Rk

[
1 −1

−1 1

]{
pi

pj

}
=
{

qi

qj

}
(2.17)

Similarly, we can construct the characteristics of each element in Figure 2.2 as

1It should be noted that we use the notation Q for both total heat flow and fluid flow rate
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Element 1

1

R1

[
1 −1

−1 1

]{
p1

p3

}
=
{

q1

−q1

}
(2.18)

Note that the mass flux rate entering an element is positive and leaving an element is
negative.

Element 2

1

R2

[
1 −1

−1 1

]{
p1

p2

}
=
{

q2

−q2

}
(2.19)

Element 3

1

R3

[
1 −1

−1 1

]{
p2

p3

}
=
{

q3

−q3

}
(2.20)

Element 4

1

R4

[
1 −1

−1 1

]{
p2

p3

}
=
{

q4

−q4

}
(2.21)

From the above element equations, it is possible to write the following nodal equations:[
1

R1
+ 1

R2

]
p1 − 1

R2
p2 − 1

R1
p3 = q1 + q2 = Q

− 1

R2
p1 +

[
1

R2
+ 1

R3
+ 1

R4

]
p2 −

[
1

R3
+ 1

R4

]
p3 = q3 + q4 − q2 = 0

− 1

R1
p1 −

[
1

R3
+ 1

R4

]
p2 +

[
1

R1
+ 1

R3
+ 1

R4

]
p3 = −q1 − q3 − q4 = −Q (2.22)

Now, the following matrix form can be written from the above equations:


[
1

R1
+ 1

R2

]
− 1

R2
− 1

R1

− 1

R2

[
1

R2
+ 1

R3
+ 1

R4

]
−
[

1

R3
+ 1

R4

]

− 1
R1

−
[

1

R3
+ 1

R4

] [
1

R1
+ 1

R3
+ 1

R4

]







p1

p2

p3


 =




q1 + q2

−q2 + q3 + q4

−q1 − q3 − q4


 =




Q

0
−Q


 (2.23)

Note that q1 + q2 = Q and q2 = q3 + q4

In this fashion, we can solve problems such as electric networks, radiation networks,
and so on. Equations 2.18 to 2.21 are also valid and may be used to determine the pressures
if q1, q2, q3 and q4 are known a priori. Let us consider a numerical example to illustrate
the above.
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Table 2.1 Details of pipe network

Component Number Diameter, cm Length, m

1 2.50 30.00
2 2.00 20.00
3 2.00 25.00
4 1.25 20.00

Example 2.2.1 In a pipe network as shown in Figure 2.2, water enters the network at a
rate of 0.1 m3/s with a viscosity of 0.96 × 10-3 Ns/m2. The component details are given in
Table 2.1. Determine the pressure values at all nodes.

On substitution of the various values, we get the following resistances in Ns/m5 from
Equation 2.15
R1 = 0.3 × 107

R2 = 0.5 × 107

R3 = 0.6 × 107

R4 = 3.2 × 107

Now Equation 2.23 can be formulated as

10−7


 5.33 −2.00 −3.33

−2.00 3.98 −1.98
−3.33 −1.98 5.31






p1

p2

p3


 =




0.1
0.0

−1.0


 (2.24)

The solution of the above simultaneous system of equations with p3 = 0.0 (assumed as
reference pressure) gives
p1 = 0.231 × 106 N/m2

p2 = 0.116 × 106 N/m2

From Equations 2.18, 2.19, 2.20 and 2.21, we can calculate the flow quantities as

q1 = p1 − p3

R1
= 0.0769 m3/s

q2 = p1 − p2

R2
= 0.0231 m3/s

q3 = p2 − p3

R3
= 0.0193 m3/s

q4 = p2 − p3

R4
= 0.0036 m3/s (2.25)

It is possible to take into account the entrance loss, exit loss, bend loss, and so on, in
the calculation of nodal pressures and flows in each circuit. If the fluid flow in the network
is turbulent, it is still possible to define an element, but the element equations are no longer
linear as can be seen from an empirical relation governing fully developed turbulent pipe
flow (Darcy-Weisbach formula (Shames 1982))

p1 − p2 = 8fLQ2ρ

πD5
(2.26)
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where ‘f ’ is the Moody friction factor, which is a function of the Reynolds number and
the pipe roughness. The fluidity matrix will contain known functions of the flow rate ‘Q’
instead of constants. Hence, the problem becomes nonlinear.

2.2.3 Heat transfer in heat sinks (combined conduction–convection)

In order to increase the heat dissipation by convection from a given primary surface,
additional surfaces may be added. The additional material added is referred to either as an
‘Extended Surface’ or a ‘Fin’. A familiar example is in motorcycles, in which fins extend
from the outer surface of the engine to dissipate more heat by convection. A schematic
diagram of such a fin array is shown in Figure 2.3. This is a good example of a heat sink.

We shall assume for simplicity that there is no variation in temperature in the thickness
and width of fins. We will also assume that the temperature varies only in the length
direction of the fin and the height direction of the hot body to which the fin is attached.
We can then derive a simplified model as shown in Figure 2.4. A typical element in the
fin array is shown in Figure 2.5.

W

L

Hot
surface

Figure 2.3 Array of thin rectangular fins

1

3

2

4

1

2

3

− Node

− Element

Figure 2.4 A simplified model of the rectangular fins of Figure 2.3
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h, Ta
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Qi Qj

Figure 2.5 A typical element from the rectangular fin arrangement and conduc-
tive–convective heat transfer mechanism

We could write the heat balance equations at nodes i and j as follows:
At node i

Qi − kA

L
(Ti − Tj ) − hPL

2

(
Ti + Tj

2
− Ta

)
= 0 (2.27)

and at node j

−Qj + kA

L
(Ti − Tj ) − hPL

2

(
Ti + Tj

2
− Ta

)
= 0 (2.28)

On simplification we get, for the node i(
kA

L
+ hPL

4

)
Ti +

(
−kA

L
+ hPL

4

)
Tj = Qi + hPL

2
Ta (2.29)

and for the node j(
−kA

L
+ hPL

4

)
Ti +

(
kA

L
+ hPL

4

)
Tj = −Qj + hPL

2
Ta (2.30)

It is now possible to write the above two equations in matrix form as


kA

L
+ hPL

4
−kA

L
+ hPL

4

−kA

L
+ hPL

4

kA

L
+ hPL

4



{

Ti

Tj

}
=




Qi + hPL

2
Ta

−Qj + hPL

2
Ta


 (2.31)

In the above equation, either Qj or Ti is often known and quantities such as Ta, h,
k, L and P are also generally known a priori. The above problem is therefore reduced to
finding three unknowns Qi or Ti , Tj and Qj . In addition to the above two equations, an
additional equation relating Qi and Qj may be used, that is,

Qi = Qj + hPL

(
Ti + Tj

2
− Ta

)
(2.32)

It is now possible to solve the system to find the unknowns. If there is more than one
element, then an assembly procedure is necessary as discussed in the previous section.



SOME BASIC DISCRETE SYSTEMS 27

Equation 2.31 reduces to Equation 2.14 in the absence of convection from the surface.
Also, if the terms (Ti + Tj )/2 in Equation 2.31 are replaced by (2Ti + Tj )/3, then we
obtain the standard Galerkin weighted residual form discussed in Example 3.5.1.

2.2.4 Analysis of a heat exchanger

The performance of a heat exchanger can be calculated in terms of its effectiveness for
a given condition (Holman 1989; Incropera and Dewitt 1990). In order to determine the
effectiveness of a heat exchanger, we have to calculate the outlet temperatures of both
the hot fluid and the cold fluid for the given inlet temperatures. The overall heat transfer
coefficient may be a constant or could vary along the heat exchanger.

For the purpose of illustration, let us consider a shell and tube heat exchanger as shown
in Figure 2.6 (Ravikumaur et al. 1984). In this type of heat exchanger, the hot fluid flows
through the tube and the tube is passed through the shell. The cooling fluid is pumped into
the shell and thus the hot fluid in the tube is cooled.

Let us divide the given heat exchanger into eight cells as shown in Figure 2.7. It is
assumed that both the hot and cold fluids will travel through the cell at least once. Let the
overall heat transfer coefficient be U and the surface area of the tubes be ‘A’. These are
assumed to be constant throughout the heat exchanger within each element. Let us assume
that the hot and cold fluid temperatures vary linearly along the flow.

Now, the heat leaving node 1 and entering element 1 (Figure 2.7b) is

Q1 = W1T1 (2.33)

where W1 is ρcp times the volume flow rate. The heat leaving element 1 and entering node
2 is (the energy balance is considered with respect to the element where the heat entering
is taken as being positive and that leaving the element is taken as being negative)

Q2 = W1T1 − UA(T1,2 − T11,12) (2.34)

where
T1,2 = T1 + T2

2
and T11,12 = T11 + T12

2
(2.35)

Cold fluid out

Hot fluid in

Shell

Baffles

Tube

Cold fluid inlet Cold fluid exit

Figure 2.6 Schematic diagram of a shell and tube heat exchanger
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Figure 2.7 (a) Simplified model of a heat exchanger, (b) Element

Similarly, the heat leaving node 11 and entering element 1 is

Q11 = W2T11 (2.36)

and the heat leaving element 1 and entering node 12 is

Q12 = W2T11 − UA(T11,12 − T1,2) (2.37)

In this example, the heat transfer between the fluids is given by UA(T11,12 − T1,2),
whereas some other models use UA(T12 − T2). The assumption in the present model is
more logical in view of the continuous variation (linear in our case) of the temperature
difference between the hot and cold fluids.

Equations 2.33, 2.34, 2.36 and 2.37 can be combined and recast in matrix form to give
the element characteristics, that is,


W1 0.0 0.0 0.0

W1 − C −C C C

0.0 0.0 W2 0.0
C C W2 − C −C






T1

T2

T11

T12


 =




Q1

Q2

Q11

Q12


 (2.38)

where C = UA
2 .

Assembly of the element characteristics for elements 1 to 8 will result in the global
stiffness matrix in which Q1, and Q10 are known (in other words T1, and T10 are
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known). The solution of the remaining equations will give the temperature distribution
for both the fluids, that is, T2, T3, T4, T5, T6, T7, T8 and T9 for the incoming hot fluid and
T11, T12, T13, T14, T15, T16, T17 and T18 for the coolant.

With the calculated exit temperatures T9 and T18, the effectiveness of the heat exchanger
can be calculated.

2.3 Transient Heat Transfer Problem (Propagation
Problem)

In a transient, or propagation, problem, the response of a system changes with time. The
same methodology used in the analysis of a steady state problem is employed here, but
the temperature and element equilibrium relations depend on time. The objective of the
transient analysis is to calculate the temperatures with respect to time.

Figure 2.8 shows an idealized case of a heat treatment chamber. A metallic part is
heated to an initial temperature, Tp, and is placed in a heat treatment chamber in which an
inert gas such as nitrogen is present. Heat is transferred from the metallic part to the gas
by convection. The gas in turn loses heat to the enclosure wall by convection. The wall
also receives heat by radiation from the metallic part directly as the gas is assumed to be
transparent. The wall loses heat to the atmosphere by radiation and convection.

The unknown variables in the present analysis are the temperature of the metallic part
Tp, the temperature of the gas Tg, and the temperature of the enclosure wall Tw.

For simplicity, we are using a lumped-parameter approach, that is, the temperature
variation within the metal, gas and wall is ignored.

Let cp, cg and cw be the heat capacities of the metallic part, the gas and the wall
respectively. The heat balance equations with respect to time can be derived as follows:

For the metallic part,

cp
dTp

dt
= −

{
hAp(Tp − Tg) + εpσAp(T

4
p − T 4

w)
}

(2.39)

For the gaseous part,

cg
dTg

dt
= hpAp(Tp − Tg) − hgAg(Tg − Tw) (2.40)

Wall, Tw

Metallic part
Tp

Gas, Tg

Metallic
part

Wall

Gas

Atmosphere

Convection +
radiation

Convection +
radiation

radiation
Convection +Radiation

Figure 2.8 Heat treatment chamber and associated heat transfer processes
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For the furnace wall,

cw
dTw

dt
= εpσAp(T

4
p − T 4

w) + hgAg(Tg − Tw)

− hwAw(Tw − Ta) − εwσAw(T 4
w − T 4

a ) (2.41)

The above three equations can be recast in matrix form as

[C]
{ ·

T
}

+ [K]{T} = {f} (2.42)

where

[C] =

 cp 0.0 0.0

0.0 cg 0.0
0.0 0.0 cw


 (2.43)

{ ·
T
}

=




dTp

dt

dTg

dt

dTw

dt




(2.44)

{T} =



Tp

Tg

Tw


 (2.45)

[K] =

 hpAp −hpAp 0.0

−hpAp hpAp + hgAg −hgAg

0.0 −hgAg hgAg + hwAw


 (2.46)

and

{f} =



0.0
0.0

hwAwTa + εpσAp(T
4
p − T 4

w) − εwσAw(T 4
w − T 4

a )


 (2.47)

where hp is the heat transfer coefficient from the metallic part to the gas; Ap, the surface
area of the metallic part in contact with the gas; hg, the heat transfer coefficient of the
gas to the wall; Ag, the surface area of the gas in contact with the wall; hw, the heat
transfer coefficient from the wall to the atmosphere; Aw, the wall area in contact with the
atmosphere; εp and εw, the emissivity values of the metallic part and the wall respectively
and σ the Stefan–Boltzmann constant (Chapter 1).

Although we follow the SI system of units, it is essential to reiterate here that the
temperatures Tp, Tg, Tw and Ta should be in K (Kelvin) as radiation heat transfer is
involved in the given problem. In view of the radiation terms appearing in the governing
equations (i.e., temperature to the power of 4), the problem is highly nonlinear and an
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iterative procedure is necessary. An initial guess of the unknown temperature values is also
essential to start any iterative procedure.

In this example, if the time terms are neglected, we can recover the steady state for-
mulation. However, the time-dependent load terms are necessary to carry out any form of
transient analysis. In practice, the reduction of an appropriate discrete system that contains
all the important characteristics of the actual physical system is usually not straightforward.
In general, a different discrete model should be chosen for a transient response prediction
than that chosen for a steady state analysis.

The time-derivative terms used in the above formulation have to be approximated in
order to obtain a temperature distribution. As discussed in later chapters, approximations
such as backward Euler, central difference, and so on, may well be employed.

2.4 Summary

In this chapter, we have discussed some basic discrete system analyses. It is important to
reiterate here that this chapter gives only a brief discussion of the system analysis. We
believe that the material provided in this chapter is sufficient to give the reader a starting
point. It should be noted that the system analysis is straightforward and works for many
simple heat transfer problems. However, for complex continuum problems, a standard
discretization of the governing equations and solution methodology is essential. We will
discuss these problems in detail in the following chapters.

2.5 Exercise

Exercise 2.5.1 Use the system analysis procedure described in this chapter and construct
the discrete system for heat conduction through the composite wall shown in Figure 2.9.
Also, from the following data, calculate the temperature distribution in the composite wall.

Areas: A1 = 2.0 m2, A2 = 1.0 m2 and A3 = 1.0 m2.
Thermal conductivity: k1 = 2.00 W/mK, k2 = 2.5 W/mK and k3 = 1.5 W/mK .
Heat transfer coefficient: h = 0.1 W/m2 K
Atmospheric temperature: Ta = 30 ◦C
Temperature at the left face of wall: T1 = 75.0 ◦C.

Exercise 2.5.2 The cross section of an insulated pipe carrying a hot fluid is shown in
Figure 2.10. The inner and outer radii of the pipe are r1 and r2 respectively. The thickness
of the insulating material is r2 − r3. Assume appropriate conditions and form the discrete
system equations.

Exercise 2.5.3 The pipe network used to circulate hot water in a domestic central heating
arrangement is shown in Figure 2.11. The flow rate at the entrance is Qm3/s. Neglecting
any loss of mass, construct a system of simultaneous equations to calculate the pressure
distribution at selected points using a discrete system analysis. Assume laminar flow occurs
in the system.
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Figure 2.9 Heat transfer in a composite wall
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Figure 2.10 Heat transfer through an insulating material

Exercise 2.5.4 A schematic diagram of a counterflow heat exchanger is shown in
Figure 2.12. The hot fluid enters the central, circular pipe from the left and exits at the
right. The cooling fluid is circulated around the inner tube to cool the hot fluid. Using the
principles of heat exchanger system discussed in this chapter, construct a discrete system to
determine the temperature distribution.

Exercise 2.5.5 A transient analysis is very important in the casting industry. In Figure 2.13,
a simplified casting arrangement is shown (without a runner or raiser). The molten metal is
poured into the mould and the metal loses heat to the mould and solidifies. It is often possible
to have a small air gap between the metal and the mould. The figure shows an idealized
system that has a uniform gap all around the metal. Assume that heat is transferred from the
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Figure 2.11 Pipe network for central heating

Cooling fluid out

L

Hot fluid Cold fluid

Cooling fluid in

A A

Figure 2.12 Counterflow heat exchanger

metal to the mould via radiation and conduction. Then heat is conducted through the mould
and convected to the atmosphere. Stating all assumptions, derive a system of equations to
carry out a transient analysis.

Exercise 2.5.6 Consider a 0.6-m high and 2-m wide double-glazed window consisting of
two 4 mm thick layers of glass (k = 0.80 W/m ◦C) separated by an 8-mm wide stagnant air
space (k = 0.025 W/m ◦C). Determine the steady state heat transfer through the window and
the temperature of the inner surface for a day when the outside air temperature is −15 ◦C
and the room temperature is 20 ◦C. The heat transfer coefficient on the inner and outer



34 SOME BASIC DISCRETE SYSTEMS

Mould
Metal

Air gap

Figure 2.13 Casting and mould arrangement

Table 2.2 Details of the composite wall

Material Thermal conductivity (W/m ◦C) Thickness (cm)

Aluminium 200 5
Copper 400 15
Steel 50 20

surface of the window are 10 W/m2 ◦C and 40 W/m2 ◦C respectively. Note that these heat
transfer coefficients include the effect of radiation. If the air gap is not provided, what is the
temperature of the glass inside the room?

Exercise 2.5.7 A simplified model can be applied to describe the steady state temperature
distribution through the core region, muscle region and skin region of the human body.
The core region temperature Tc, is the mean operating temperature of the internal organs.
The muscle temperature, Tm, is the operating temperature of the muscle layer of the human
body. Muscle is a shell tissue, and can be either resting or actively working. The skin
temperature, Ts , is the operating temperature of the surface region of the body consisting of
a subcutaneous fat layer, the dermal layer and finally the epidermal layer. If the metabolic
heat rate of a common man is 45 W/m2 and the skin temperature is 32.6 ◦C, calculate the core
region temperature if the thermal conductivity of the core, muscle and skin are 0.48 W/m ◦C
and the thickness of the layers are 4 cm, 2 cm and 1 cm respectively. Also calculate the
muscle temperature.

Exercise 2.5.8 A composite wall consists of layers of aluminium, copper and steel. The
steel external surface is 350 ◦C, and the external surface of the aluminium is exposed to an
ambient of 25 ◦C with a heat transfer coefficient of 5 W/m2 ◦C. Calculate the heat loss and
the interfacial temperature using a three-element model using the data given in Table 2.2.

Exercise 2.5.9 An incompressible fluid flows through a pipe network of circular pipes as
shown in Figure 2.14. If 0.1 m3/s of fluid enters and leaves the pipe network, using a 4-node
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Figure 2.14 Incompressible flow through a pipe network

Table 2.3 Pipe network element details

Element number Nodes Diameter, D (cm) Length, L (m)

1 1,2 5 25
2 2,3 5 25
2 1,4 5 25
4 4,3 5 25
5 2,4 10 90

5Ω

5 Ω
10 Ω

5 Ω

1 2

3

4 0 V10 V

Figure 2.15 A direct current circuit

5-element model, calculate the nodal pressure and the volume flow in each pipe. If nodes
1 and 3 are directly connected, in addition to the existing arrangement, what change takes
place in the nodal pressure and volume fluid in each pipe? The viscosity of the fluid is
1 × 10-2 N s/m2. For laminar flow, the resistance for the flow is given by 128 µL/πD4. The
details of the elements are given in Table 2.3.

Exercise 2.5.10 Figure 2.15 shows a direct current circuit. The voltage at the output ter-
minals are also shown in Figure 2.15. Calculate the voltage at each node and the current
in each of the branches using the discrete system analysis.

Exercise 2.5.11 A cross section of a heat sink used in electronic cooling is shown in
Figure 2.16. All the fins are of same size. Calculate the heat dissipating capacity of the
heat sink per unit length of the heat sink.

Exercise 2.5.12 The details of a double pipe heat exchanger are given as (a) cold fluid
heat capacity rate C1 = 1100 W/kg ◦C; (b) hot fluid heat capacity rate C2 = 734 W/kg ◦C;
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Figure 2.16 A heat sink

(c) overall heat transfer coefficient U = 600 W/m2 ◦C (d) heat exchanger area A = 4 m2 (e)
cold fluid entry temperature Tci = 20 ◦C (f) hot fluid entry temperature Thi = 80 ◦C. Set up
the stiffness matrix and hence solve for the outlet temperature and the effectiveness of the
heat exchanger by using 1 element, 2 elements and 4 elements for the heat exchanger. Also
determine the minimum number of elements required for converged solution.

Exercise 2.5.13 Figure 2.17 shows an arrangement for cooling of an electronic equipment
consisting of a number of printed circuit boards (PCBs) enclosed in a box. Air is forced
through the box by a fan. Select a typical element and write down the stiffness matrix and
show that this method can take care of non-uniform flow (by using the methodology similar
to that in Exercise 2.5.9, the non-uniform flow in each channel can be determined) and
non-uniform heat generation in individual PCB.

Air out

Air in

PCB with heat-generating
electronic components 

Figure 2.17 Assembly of printed circuit boards



SOME BASIC DISCRETE SYSTEMS 37

Bibliography

Bathe KJ 1982 Finite Element Procedures in Engineering Analysis, Prentice Hill, Englewood Cliffs,
NJ.

Holman JP 1989 Heat Transfer, McGraw-Hill, Singapore.
Huebner K and Thornton EA 1982 The Finite Element Method for Engineers, Second Edition, John

Wiley & Sons.
Hughes TJR 2000 The Finite Element Method: Linear Static and Dynamic Finite Element Analysis,

Dover Publications, New York.
Incropera, FP and Dewitt, DP 1990 Fundamentals of Heat and Mass Transfer, John Wiley & Sons,

New York.
Ravikumaur SG, Seetharamu KN and Aswatha Narayana PA 1986 Applications of finite elements in

heat exchangers, Communications in Applied Numerical Methods, 2, 229–234.
Reddy JN 1993 An Introduction to Finite Element Method, Second Edition, McGraw-Hill Book

Company, New York.
Segerlind LJ 1984 Applied Finite Element Analysis, Second Edition, John Wiley & Sons, New York.
Shames IH 1982 Mechanics of Fluids, McGraw-Hill, Singapore.
Zienkiewicz OC and Taylor RL 2000 The Finite Element Method, Vol. 1, The Basis, Fifth Edition,

Butterworth and Heinemann, London.



3

The Finite Element Method

3.1 Introduction

The finite element method is a numerical tool for determining approximate solutions to
a large class of engineering problems. The method was originally developed to study the
stresses in complex air-frame structures (Clough 1960) and was later extended to the gen-
eral field of continuum mechanics (Zienkiewicz and Cheung 1965). There have been many
articles on the history of finite elements written by numerous authors with conflicting opin-
ions on the origins of the technique (Gupta and Meek 1996; Oden 1996; Zienkiewicz 1996).
The finite element method is receiving considerable attention in engineering education and
in industry because of its diversity and flexibility as an analysis tool. It is often necessary
to obtain approximate numerical solutions for complex industrial problems, in which exact
closed-form solutions are difficult to obtain. An example of such a complex situation can be
found in the cooling of electronic equipment (or chips). Also, the dispersion of pollutants
during non-uniform atmospheric conditions, metal wall temperatures in the case of gas
turbine blades in which the inlet gas temperatures exceed the melting point of the material
of the blade, cooling problems in electrical motors, various phase-change problems, and so
on, are a few examples of such complex problems. Although it is possible to derive the
governing equations and boundary conditions from first principles, it is difficult to obtain
any form of analytical solution to such problems. The complexity is due to the fact that
either the geometry, or some other feature of the problem, is irregular or arbitrary. Analyt-
ical solutions rarely exist; yet these are the kinds of problems that engineers and scientists
solve on a day-to-day basis.

Among the various numerical methods that have evolved over the years, the most com-
monly used techniques are the finite difference, finite volume and finite element methods.
The finite difference is a well-established and conceptually simple method that requires a
point-wise approximation to the governing equations. The model, formed by writing the
difference equations for an array of grid points, can be improved by increasing the number
of points. Although many heat transfer problems may be solved using the finite difference

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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methods (Ozisik and Czisik 1994), as soon as irregular geometries or an unusual speci-
fication of boundary conditions are encountered, the finite difference technique becomes
difficult to use.

The finite volume method is a further refined version of the finite difference method and
has become popular in computational fluid dynamics (Patankar 1980). The vertex-centred
finite volume technique is very similar to the linear finite element method (Malan et al.
2002).

The finite element method (Baker 1985; Bathe 1982; Chandrupatla and Belegundu 1991;
Huebner and Thornton 1982; Hughes 2000; Lewis et al. 1996; Rao 1989; Reddy 1993;
Segerlind 1984; Zienkiewicz and Morgan 1983; Zienkiewicz and Taylor 2000) considers
that the solution region comprises many small, interconnected, sub-regions or elements and
gives a piece-wise approximation to the governing equations, that is, the complex partial
differential equations are reduced to either linear or nonlinear simultaneous equations. Thus,
the finite element discretization (i.e., dividing the region into a number of smaller regions)
procedure reduces the continuum problem, which has an infinite number of unknowns, to
one with a finite number of unknowns at specified points referred to as nodes. Since the
finite element method allows us to form the elements, or sub-regions, in an arbitrary sense,
a close representation of the boundaries of complicated domains is possible.

Most of the finite difference schemes used in fluid dynamics and heat transfer problems
can be viewed as special cases within a weighted residual framework. For weighted residual
procedures, the error in the approximate solution of the conservation equations is not set to
zero, but instead its integral, with respect to selected ‘weights’, is required to vanish. Within
this family, the collocation method reproduces the classical finite difference equations,
whereas the finite volume algorithm is obtained by using constant weights.

For engineers whose expertise lies in fluid dynamics and heat transfer, the finite element
approaches introduced by mathematicians or structural analysts, may be difficult to follow.
Therefore, in this book we intend to present a step-by-step procedure of the finite element
method as applied to heat transfer problems. In doing so, we intend to present the topic
in as simplified a form as possible so that both students and practising engineers can
benefit.

A numerical model for a heat transfer problem starts with the physical model of the
problem, an example of which is shown in Figure 3.1. As can be seen, one part of the model
deals with the discretization of the domain and the other carries out the discrete approxima-
tion of the partial differential equations. Finally, by combining both, the numerical solution
to the problem is achieved.

The solution of a continuum problem by the finite element method is approximated by
the following step-by-step process1.

1. Discretize the continuum
Divide the solution region into non-overlapping elements or sub-regions. The finite

element discretization allows a variety of element shapes, for example, triangles, quadrilat-
erals. Each element is formed by the connection of a certain number of nodes (Figure 3.2).

1It should be noted that on first reading, these steps may not be very obvious to beginners. However, these
steps will be clear as we go through the details in the following sections
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Figure 3.1 Numerical model for heat transfer calculations
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Figure 3.2 Typical finite element mesh. Elements, nodes and edges

The number of nodes employed to form an element depends on the type of element (or
interpolation function).

2. Select interpolation or shape functions
The next step is to choose the type of interpolation function that represents the variation

of the field variable over an element. The number of nodes form an element; the nature and
number of unknowns at each node decide the variation of a field variable within the element.
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3. Form element equations (Formulation)
Next, we have to determine the matrix equations that express the properties of the

individual elements by forming an element Left Hand Side (LHS) matrix and load vector.
For example, a typical LHS matrix and a load vector can be written as

[K]e = Ak

l

[
1 −1

−1 1

]
(3.1)

{f}e =
{

Qi

Qj

}
(3.2)

where the subscript e represents an element; Q is the total heat transferred; k is the thermal
conductivity; l is the length of a one-dimensional linear element and i and j represent the
nodes forming an element. The unknowns are the temperature values on the nodes.

4. Assemble the element equations to obtain a system of simultaneous equations
To find the properties of the overall system, we must assemble all the individual ele-

ment equations, that is, to combine the matrix equations of each element in an appropriate
way such that the resulting matrix represents the behaviour of the entire solution region
of the problem. The boundary conditions must be incorporated after the assemblage of the
individual element contributions (see Appendix C), that is,

[K]{T} = {f} (3.3)

where [K] is the global LHS matrix, which is the assemblage of the individual element LHS
matrices, as given in Equation 3.1, {f} is the global load vector, which is the assemblage of
the individual element load vectors the Equation 3.2, and {T} is the global unknown vector.

5. Solve the system of equations
The resulting set of algebraic equations, Equation 3.3, may now be solved to obtain the

nodal values of the field variable, for example, temperature.

6. Calculate the secondary quantities
From the nodal values of the field variable, for example, temperatures, we can then

calculate the secondary quantities, for example, space heat fluxes.

3.2 Elements and Shape Functions

As shown in Figure 3.1, the finite element method involves the discretization of both the
domain and the governing equations. In this process, the variables are represented in a
piece-wise manner over the domain. By dividing the solution region into a number of
small regions, called elements, and approximating the solution over these regions by a
suitable known function, a relation between the differential equations and the elements is
established. The functions employed to represent the nature of the solution within each
element are called shape functions, or interpolating functions, or basis functions. They are
called interpolating functions as they are used to determine the value of the field variable
within an element by interpolating the nodal values. They are also known as basis functions
as they form the basis of the discretization method. Polynomial type functions have been
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Figure 3.3 One-dimensional finite elements. (a) A linear element, (b) a quadratic element,
(c) linear and (d) quadratic variation of temperature over an element

most widely used as they can be integrated, or differentiated, easily and the accuracy of the
results can be improved by increasing the order of the polynomial as shown in Figure 3.3(c)
and (d).

3.2.1 One-dimensional linear element

Many industrial and environmental problems may be approximated using a one-dimensional
finite element model. For instance, pipe flow, river flow, heat transfer through a fin with a
uniform cross section, and so on, can be resolved approximately using a one-dimensional
assumption. Figure 3.3 shows the temperature profile in an element as represented by linear
and quadratic polynomials.

Let us consider a typical linear element with end nodes ‘i’ and ‘j ’ with the correspond-
ing temperature being denoted by Ti and Tj respectively.

The linear temperature variation in the element is represented by

T (x) = α1 + α2x (3.4)

where T is the temperature at any location x and the parameters α1, and α2 are constants.
Since there are two arbitrary constants in the linear representation, it requires only two
nodes to determine the values of α1, and α2, namely,

Ti = α1 + α2xi

Tj = α1 + α2xj (3.5)
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From the above equations, we get

α1 = Tixj − Tjxi

xj − xi

α2 = Tj − Ti

xj − xi

(3.6)

On substituting the values of α1, and α2 into Equation 3.4 we get

T = Ti

[
xj − x

xj − xi

]
+ Tj

[
x − xi

xj − xi

]
(3.7)

or

T = NiTi + NjTj = [
Ni Nj

] {Ti

Tj

}
(3.8)

where Ni and Nj are called Shape functions or Interpolation functions or Basis functions.

Ni =
[

xj − x

xj − xi

]

Nj =
[

x − xi

xj − xi

]
(3.9)

Equation 3.8 can be rewritten as

T = [N]{T} (3.10)

where

[N] = [
Ni Nj

]
(3.11)

is the shape function matrix and

{T} =
{

Ti

Tj

}
(3.12)

is the vector of unknown temperatures.
Equation 3.8 shows that the temperature T at any location x can be calculated using

the shape functions Ni and Nj evaluated at x. The shape functions at different locations
within an element are tabulated in Table 3.1.

Table 3.1 Properties of linear shape functions

Item Node, i Node, j Arbitrary x

Ni 1 0 between 0 and 1
Nj 0 1 between 0 and 1

Ni + Nj 1 1 1
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Figure 3.4 Variation of shape functions, temperature and derivatives within a linear
element

The shape function assumes a value of unity at the designated node and zero at all
other nodes. We also see that the sum of all the shape functions in an element is equal to
unity anywhere within the element including the boundaries. These are the two essential
requirements of the properties of the shape functions of any element in one, two or three
dimensions. Figure 3.4 shows the variation of the shape functions and their derivatives
within a linear element. A typical linear variation of temperature is also shown in this
figure. As seen, the derivatives of the shape functions are constant within an element.

From Equation 3.8, the temperature gradient is calculated as

dT

dx
= dNi

dx
Ti + dNj

dx
Tj = − 1

xj − xi

Ti + 1

xj − xi

Tj (3.13)

or

dT

dx
= [− 1

l
1
l

] {Ti

Tj

}
(3.14)

where l is the length of an element equal to (xj − xi).
Thus, we observe that the temperature gradient is constant within an element as the

temperature variation is linear. We can rewrite Equation 3.14 as

g = [B]{T} (3.15)

where g is the gradient of the field variable T

[B] is the derivative matrix, or strain matrix in structural mechanics, which relates the
gradient of the field variable to the nodal values and {T} is the temperature vector.

The shape function matrix [N] and the derivative matrix [B] are the two important
matrices that are used in the determination of the element properties as we shall see later
in this chapter.
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Example 3.2.1 Calculate the temperature of an 8-cm long bar at a distance of 5 cm from
one end where the temperature is 120◦C with the other end at a temperature of 200◦C.
Assume the temperature variation between the two end points as being linear.

From Equation 3.8, the temperature distribution over an element can be written as

T = NiTi + NjTj (3.16)

where, at x = 5 cm

Ni = xj − x

xj − xi

= 3

8

Nj = x − xi

xj − xi

= 5

8
(3.17)

Substituting into Equation 3.16, we get T = 170◦C. Note that Ni + Nj = 1.

3.2.2 One-dimensional quadratic element

We can see from Figure 3.3(d) that a better approximation for the temperature profile could
be achieved if we use parabolic arcs over each element rather than linear segments. The
function T (x) would therefore be quadratic in x within each element and is of the form

T (x) = α1 + α2x + α3x
2 (3.18)

We now have three parameters to determine and hence we need the temperature at
one more point in addition to two end points of an element. We choose the mid-point in
addition to the end values to get the following equations for the temperature at these three
locations,

Ti = α1

Tj = α1 + α2
l

2
+ α3

(
l

2

)2

Tk = α1 + α2l + α3l
2 (3.19)

From the above three equations, we obtain the following values for the three constants
α1, α2 and α3.

α1 = Ti

α2 = 1

l
(−3Ti + 4Tj − Tk)

α3 = 2

l2
(Ti − 2Tj + Tk) (3.20)

Substituting the values of α1, α2 and α3, into Equation 3.18 and collating the coefficients
of Ti, Tj and Tk, we get

T = Ti

[
1 − 3x

l
+ 2x2

l2

]
+ Tj

[
4
x

l
− 4

x2

l2

]
+ Tk

[
2
x2

l2
− x

l

]
(3.21)
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or
T = NiTi + NjTj + NkTk (3.22)

Hence the shape functions for a one-dimensional quadratic element are obtained from
Equation 3.21 as follows:

Ni =
[

1 − 3x

l
+ 2x2

l2

]

Nj =
[

4
x

l
− 4

x2

l2

]

Nk =
[

2
x2

l2
− x

l

]
(3.23)

The variation of temperature and shape functions of a typical quadratic element is
shown in Figure 3.5. The first derivative of temperature can now be written as

dT

dx
= dNi

dx
Ti + dNj

dx
Tj + dNk

dx
Tk (3.24)

or

dT

dx
=
[

4x

l2
− 3

l

]
Ti +

[
4

l
− 8x

l2

]
Tj +

[
4x

l2
− 1

l

]
Tk (3.25)

1 1

Nj

Ni Nk

i j k

i j k

Ti

Tj

Tk

l

l/2 l/2

Figure 3.5 Variation of shape functions and their derivatives over a one-dimensional
quadratic element
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In matrix form,
g = [B]{T} (3.26)

The [B] matrix is given as

[B] =
[(

4x

l2
− 3

l

) (
4

l
− 8x

l2

) (
4x

l2
− 1

l

)]
(3.27)

Equation 3.23 shows that Ni = 1 at i and 0 at j and k, Nj = 1 at j and 0 at i and k

and Nk = 1 at k and 0 at i and j .
It can be verified easily that within an element the summation over the shape functions

is equal to unity, that is,
3∑

i=1

Ni = 1 (3.28)

For example at the point x = l/4, the shape function values are

Ni = 1 − 3

4
+ 2

16
= 6

16

Nj = 1 − 4

16
= 12

16

Nk = 2

16
− 1

4
= − 2

16
(3.29)

and it can be easily seen that the sum of the above three shape functions is equal to 1.
It can also be observed that even though the derivatives of the quadratic element are

functions of the independent variable x, they will not be continuous at the inter-element
nodes. The type of interpolation used here is known as Lagrangian (as they can be generated
by Lagrangian interpolation formulae) and it only guarantees the continuity of the function
across the inter-element boundaries. These types of elements are known as C0 elements, in
which the superscript indicates that only derivatives of zero order are continuous, that is,
only the function is continuous. The elements that also assure the continuity of derivatives
across inter-element boundaries, in addition to the continuity of functions, are known as
C1 elements and such functions are known as Hermite polynomials.

The C0 shape functions can be determined in a general way by using Lagrangian poly-
nomial formulae. The one-dimensional (n − 1) th order Lagrange interpolation polynomial
is the ratio of two products. For an element with n nodes, (n − 1) order polynomial, the
interpolation function is

Ne
k (x) = �n

i=1
x − xi

xk − xi

(3.30)

Note that in the above equation k �= i. For a one-dimensional linear element, the shape
functions can be written using Equation 3.30, as (n = 2)

N1 = x − x2

x1 − x2
and N2 = x − x1

x2 − x1
(3.31)
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x /l (1 − x/ l)

0
1

x

i j

Figure 3.6 A one-dimensional linear element represented by local coordinates

Note that N1 and N2 are the shape functions corresponding to the two nodes of a
one-dimensional linear element (Ni and Nj ).

If we use local coordinates, as shown in Figure 3.6, with x1 = 0 and x2 = 1, then the
shape functions (Equation 3.31) become

Ni =
(

1 − x

l

)
= Li and Nj =

(x

l

)
= Lj (3.32)

where Li and Lj are the shape functions defined by the local coordinate system. For a
one-dimensional quadratic element, the shape functions using Lagrangian multipliers are
given as follows:

N1 = x − x2

x1 − x2

x − x3

x1 − x3

N2 = x − x1

x2 − x1

x − x3

x2 − x3

N3 = x − x1

x3 − x1

x − x2

x3 − x2
(3.33)

If we substitute x1 = 0, x2 = l/2 and x3 = l, in the above equation, we can immediately
verify that the resulting equations are identical to the one derived from Equation 3.23.

Similarly, cubic elements, or any other one-dimensional higher-order element shape
functions, can easily be derived using the Lagrangian interpolation formula.

For the case of quadratic and cubic elements, a better approximation of curved shapes
is possible as we have more than two points placed along the boundaries of an element.

3.2.3 Two-dimensional linear triangular elements

When one-dimensional approximations are insufficient, multi-dimensional solution proce-
dures need to be employed. In this section, we introduce for the first time a two-dimensional
element. The simplest geometric shape that can be employed to approximate irregular sur-
faces is the triangle and it is one of the popular elements currently used in finite element
calculations. This is partly due to the advances made on unstructured and adaptive mesh
generation techniques in recent times (Thompson et al. 1999).

The two-dimensional linear triangular element, also known as a simplex element, is
represented by

T (x, y) = α1 + α2x + α3y (3.34)
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Tk

Ti

Tj

i

j

k
y

x

(xk, yk)

(xi, yi)

(xj, yj)

Figure 3.7 A linear triangular element

where the polynomial is linear in x and y and contains three coefficients. Since a linear
triangle has three nodes (Figure 3.7), the values of α1, α2 and α3 are determined from

Ti = α1 + α2xi + α3yi

Tj = α1 + α2xj + α3yj

Tk = α1 + α2xk + α3yk (3.35)

which results in the following:

α1 = 1

2A

[
(xj yk − xkyj )Ti + (xkyi − xiyk)Tj + (xiyj − xjyi)Tk

]
α2 = 1

2A

[
(yj − yk)Ti + (yk − yi)Tj + (yi − yj )Tk

]
α3 = 1

2A

[
(xk − xj )Ti + (xi − xk)Tj + (xj − xi)Tk

]
(3.36)

where ‘A’ is the area of the triangle given by

2A = det


1 xi yi

1 xj yj

1 xk yk


 = (xiyj − xjyi) + (xkyi − xiyk) + (xj yk − xkyj ) (3.37)

Substituting the values of α1, α2 and α3 into Equation 3.35 and collating the coefficients
of Ti, Tj and Tk , we get

T = NiTi + NjTj + NkTk = [
Ni Nj Nk

]
Ti

Tj

Tk


 (3.38)
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where,

Ni = 1

2A
(ai + bix + ciy)

Nj = 1

2A
(aj + bjx + cjy)

Nk = 1

2A
(ak + bkx + cky) (3.39)

and
ai = xjyk − xkyj ; bi = yj − yk; ci = xk − xj

aj = xkyi − xiyk; bj = yk − yi; cj = xi − xk

ak = xiyj − xjyi; bk = yi − yj ; ck = xj − xi (3.40)

If we evaluate Ni at node i, where the coordinates are (xi, yi), then we obtain

(Ni)i = 1

2A

[
(xjyk − xkyj ) + (yj − yk)xi + (xk − xj )yi

] = 2A

2A
= 1 (3.41)

Similarly, it can readily be verified that (Nj )i = (Nk)i = 0.
Thus, we see that the shape functions have a value of unity at the designated vertex

and zero at all other vertices. It is possible to show that

Ni + Nj + Nk = 1 (3.42)

everywhere in the element, including the boundaries.
The gradients of the temperature T are given by

∂T

∂x
= ∂Ni

∂x
Ti + ∂Nj

∂x
Tj + ∂Nk

∂x
Tk = bi

2A
Ti + bj

2A
Tj + bk

2A
Tk

∂T

∂y
= ∂Ni

∂y
Ti + ∂Nj

∂y
Tj + ∂Nk

∂y
Tk = ci

2A
Ti + cj

2A
Tj + ck

2A
Tk (3.43)

or

{g} =




∂T

∂x

∂T

∂y


 = 1

2A

[
bi bj bk

ci cj ck

]


Ti

Tj

Tk


 = [B]{T} (3.44)

It should be noted that both ∂T /∂x and ∂T /∂y are constants within an element as
bi, bj , bk and ci, cj , ck are constants for a given triangle. Hence, the heat fluxes qx and qy

are also constants within a linear triangular element. Since the temperature varies linearly
within an element, it is possible to draw the isotherms within a linear triangle and this is
illustrated in the following example.

Example 3.2.2 As an illustration of the method of calculation, let us calculate the temper-
ature, T and heat fluxes qx and qy within an element for the data given in Table 3.2

Calculate the temperature T , and the heat flux components qx and qy at (2.0, 1.0) if the
thermal conductivity of the material is 2 W/cm K. Draw the isothermal line for 60◦C in the
triangle.
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Table 3.2 Data for Example 3.2.2

Node x (cm) y (cm) T ◦C

i 0.0 0.0 50.0
j 4.0 0.0 70.0
k 0.0 2.5 100.0

The temperature at any location within the triangle is given by Equation 3.38
The shape functions are calculated using Equation 3.39 with the x and y coordinates as

given in Table 3.2. The result is

Ni = 1

10

Nj = 5

10

Nk = 4

10
(3.45)

The substitution of the nodal temperatures and the above shape function values into
Equation 3.38 results in the temperature of the point (2.0, 1.0) being

T = NiTi + NjTj + NkTk = 1

10
(50) + 5

10
(70) + 4

10
(100) = 80◦C (3.46)

The components of heat flux in the x and y directions are calculated as

{
qx

qy

}
= − k

2A

[
bi bj bk

ci cj ck

]


Ti

Tj

Tk


 = − 2

10

[
50

200

]
(3.47)

The position of the 60◦C isotherm may be obtained from Figure 3.8. From the given
temperature values, it is clear that one 60◦C point lies on the side ij (point P ) and another
lies on the side ik (point Q). It should be noted that the temperature varies linearly along
these sides, that is, temperature is directly proportional to distance.

P(2,0)i j50 °C

100°C

70°C
60°C

(0,0) (4,0)

k (0,2.5)

x

y

Q(0,0.5)

Figure 3.8 Isotherm within a linear triangular element
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In order to determine the location of P on ij , we have the following linear relation
between the distances and temperature values, namely,

60.0 − 50.0

70.0 − 50.0
=
√

(xP − xi)2 + (yP − yi)2√
(xj − xi)2 + (yj − yi)2

(3.48)

From the data given, it is clear that the y coordinate on the ij side are equal to zero
and thus the above equation is simplified to

10.0

20.0
= (xP − xi)

(xj − xi)
(3.49)

which results in xP = 2.0 cm. The location of Q along ik can be determined in a similar
fashion as

60.0 − 50.0

100.0 − 50.0
= yQ − yi

yk − yi

(3.50)

which gives yQ = 0.5 cm. The x coordinate of this point is zero.
The line joining P and Q will be the 60◦C isothermal (Figure 3.8). It should be noted

that the same principle can be used for arbitrary triangles.

3.2.4 Area coordinates

An area, or natural, coordinate system will now be introduced for triangular elements in
order to simplify the solution process. Let us consider a point P within a triangle at any
location as shown in Figure 3.9. The local coordinates Li , Lj and Lk of this point can be
established by calculating appropriate non-dimensional distances or areas. For example, Li

is defined as the ratio of the perpendicular distance from point P to the side ‘jk’ (OP ) to
the perpendicular distance of point ‘i’ from the side ‘jk’ (QR). Thus,

Li = OP

QR
(3.51)

Similarly, Lj and Lk are also defined. The value of Li is also equal to the ratio of the
area Ai (opposite to node ‘i’) to the total area of the triangle, that is,

Li = Ai

A
= 0.5(OP)(jk)

0.5(QR)(jk)
= OP

QR
(3.52)

R

Q

O

P

i j

k

Aj

Ai

Ak

y

x

Figure 3.9 Area coordinates of a triangular element
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Thus, the local coordinate Li varies from 0 on the side jk to 1 at the node i. From
Figure 3.9 it is obvious that

Ai + Aj + Ak = A (3.53)

or

Ai

A
+ Aj

A
+ Ak

A
= 1 (3.54)

therefore

Li + Lj + Lk = 1 (3.55)

The relationship between the (x, y) coordinates and the natural, or area, coordinates are
given by

x = Lixi + Ljxj + Lkxk (3.56)

and
y = Liyi + Ljyj + Lkyk (3.57)

From Equations 3.55, 3.56 and 3.57, the following relations for the local coordinates
can be derived:

Li = 1

2A
(ai + bix + ciy)

Lj = 1

2A
(aj + bjx + cjy)

Lk = 1

2A
(ak + bkx + cky) (3.58)

where the constants a, b and c are defined in Equation 3.40. Comparing with Equation 3.39,
it is clear that

Li = Ni

Lj = Nj

Lk = Nk (3.59)

Thus, the local or area coordinates in a triangle are the same as the shape functions for
a linear triangular element. In general, the local coordinates and shape functions are the
same for linear elements irrespective of whether they are of one, two or three dimensions.

For a two-dimensional linear triangular element, with local coordinates Li , Lj and Lk,
we have a simple formula for integration over the triangle, that is,∫

A

La
i L

b
jL

c
kdA =

∫
A

Na
i Nb

j Nc
k dA = a!b!c!

(a + b + c + 2)!
2A (3.60)

where ‘A’ is the area of a triangle. Note that Li, Lj and Lk happen to be the shape functions
for a linear triangular element. Example 3.2.2 can also be solved using the local coordinates
via Equations 3.53 and 3.56, that is, on substituting the x and y coordinates of the three
points (Table 3.2) of the triangle into Equation 3.56, we obtain

Lj = x

4
(3.61)
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and

Lk = y

2.5
(3.62)

From Equation 3.55, we get

Li = 1 − x

4
− y

2.5
(3.63)

At (x, y) = (2, 1), we have

Li = 0.1 = Ni

Lj = 0.5 = Nj

Lk = 0.4 = Nk (3.64)

Note that these local coordinates are exactly the same as the shape function values
calculated in Example 3.2.2

3.2.5 Quadratic triangular elements

We can write a quadratic approximation over a triangular element as

T = α1 + α2x + α3y + α4x
2 + α5y

2 + α6xy (3.65)

Since there are six arbitrary constants, the quadratic triangle will have six nodes
(Figure 3.10). The six constants α1, α2, . . . , α6 can be evaluated by substitution of the
nodal coordinates and the corresponding nodal temperatures T1, T2, . . . , T6. For example,
we can write the following relationship for the first node:

T1 = α1 + α2x1 + α3y1 + α4x
2
1 + α5y

2
1 + α6x1y1 (3.66)

Once α1, α2, . . . , α6 are determined, then the substitution of these parameters into
Equation 3.65 and collating the coefficients of T1, T2, . . . , T6, give relations for the shape
functions. The process is both tedious and unnecessary. A much superior and more general

1 2 3

4

5

6

y

x

Figure 3.10 A quadratic triangular element
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method of establishing the shape functions exists, which is based on local coordinates. The
rationale behind this is given by Silvester (Silvester 1969) and can also be used to find the
shape functions for a cubic triangular element.

Silvester introduced a triple-index numbering scheme αβγ , which satisfies the following
expression,

α + β + γ = n (3.67)

where n is the order of the interpolation polynomial used. We can write Nαβγ to denote
the interpolation function for a node as a function of the area coordinates Li, Lj and Lk,
namely,

Nαβγ (Li, Lj , Lk) = Nα(Li)Nβ(Lj )Nγ (Lk) (3.68)

where

Nα(Li) = �α
i=1

[
nLi − i + 1

i

]
if α ≥ 1 (3.69)

Nα(Li) = 1 if α = 0 (3.70)

Similarly, we can write relations for Nβ and Nγ in terms of Lj and Lk respectively.
For a quadratic triangular element, as shown in Figure 3.11, the shape functions are

designated as
Corner nodes: N1 = N200; N3 = N020; N5 = N002

Mid-side nodes: N2 = N110; N4 = N011; N6 = N101

Let us calculate typical terms, for example, N200 and N110.

N200 = N2(Li)N0(Lj )N0(Lk) (3.71)

In the above equation, α = 2, β = 0 and γ = 0 and therefore, from equation 3.69 we
have

Nα = N2(Li) = �2
i=1

[
nLi − i + 1

i

]
=
[

2Li − 1 + 1

1

] [
2Li − 2 + 1

2

]
= Li(2Li − 1)

(3.72)

1 2 3

4 N011

5 N002

6

x

N110
N020N200

N101
b = 0

y

a = 0

g = 0

Figure 3.11 Shape function designations of a quadratic triangular element
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and similarly
Nβ = N0(Lj ) = 1 and Nγ = N0(Lj ) = 1 (3.73)

Hence,
N200 = N2(Li)N0(Lj )N0(Lk) = Li(2Li − 1) = N1 (3.74)

is the shape function for node 1. Similarly,

N3 = N020 = Lj(2Lj − 1) and

N5 = N002 = Lk(2Lk − 1) (3.75)

For a middle node, with shape function N110, we have

N110 = N1(Li)N1(Lj )N0(Lk)

=
[
�1

i=1

(
2Li − i + 1

i

)][
�1

i=1

(
2Lj − i + 1

i

)]

=
(

2Li − 1 + 1

1

)(
2Lj − 1 + 1

1

)
(3.76)

Thus,
N2 = N110 = 4LiLj (3.77)

Similarly,
N4 = N011 = 4LjLk

N6 = N101 = 4LkLi (3.78)

We can summarize the nodal shape functions for a quadratic triangle as follows:
For corner nodes,

Nm = Ln(2Ln − 1) with m = 1, 3, 5 and n = i, j, k (3.79)

and for nodes at centres,
N2 = 4LiLj

N4 = 4LjLk

N6 = 4LkLi (3.80)

In a similar way, we can show that the interpolation functions for a 10-node cubic
triangle are (see Figure 3.12) as follows:

For corner nodes,

Nm = 1

2
Ln(3Ln − 1)(3Ln − 2) with m = 1, 4, 7 and n = i, j, k (3.81)

Side ij

N2 = 9

2
LiLj (3Li − 1)

N3 = 9

2
LiLj (3Lj − 1) (3.82)
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1 2
3

4

5

6

7

8

9
10

x

y

Figure 3.12 Ten-node cubic triangular element

Side jk

N5 = 9

2
LjLk(3Lj − 1)

N6 = 9

2
LjLk(3Lk − 1) (3.83)

Side ki

N8 = 9

2
LkLi(3Lk − 1)

N9 = 9

2
LkLi(3Li − 1) (3.84)

and for the node at the centre of the triangle

N10 = 27LiLjLk (3.85)

It is possible to derive shape functions for even higher-order elements using the same
procedure.

3.2.6 Two-dimensional quadrilateral elements

The quadrilateral element has four nodes located at the vertices as shown in Figure 3.13.
Eight and nine node quadrilaterals are also used in practice. The quadrilateral mesh resem-
bles a finite difference mesh. However, for the case of a finite difference mesh, the mesh
must be orthogonal, that is, all lines intersect at right angles to one another, whereas
in the finite element mesh, each element can be unique in shape and each side may
have a different slope. In its simplest form, the quadrilateral element becomes a rect-
angular element (Figure 3.14) with the boundaries of the element parallel to a coordinate
system.

The temperature within a quadrilateral is represented by

T = α1 + α2x + α3y + α4xy (3.86)



58 THE FINITE ELEMENT METHOD

1 2

3

4

y

x

(x3,y3)

(x1,y1) (x2,y2)

(x4,y4)

Figure 3.13 A typical quadrilateral element

1(−b,−a) 2(b,−a)

(−b,a) (b,a)

(0,0)

y

x

b b

a

a

4 3

Figure 3.14 A simple rectangular element

and thus the temperature gradients may be written as

∂T

∂x
= α2 + α4y

∂T

∂y
= α3 + α4x (3.87)

Therefore, the gradient varies within the element in a linear way. On substituting the
values of T1, T2, T3 and T4 into Equation 3.86 for the nodes (x1, y1) . . . (x4, y4) and solving,
we obtain the values of α1, α2, α3 and α4. Substituting these relationships into Equation 3.86
and collating the coefficients of T1, T2, . . . , T4, we get

T = N1T1 + N2T2 + N3T3 + N4T4 (3.88)

where for a rectangular element (Figure 3.14),

N1 = 1

4ab
(b − x)(a − y)

N2 = 1

4ab
(b + x)(a − y)

N3 = 1

4ab
(b + x)(a + y)

N4 = 1

4ab
(b − x)(a + y) (3.89)
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2

4 3

1

(1,−1)

(−1,1) (1,1)

(−1,−1)

h

z

Figure 3.15 Non-dimensional coordinates of a rectangular element

We can express these shape functions in terms of length ratios x/b and y/a as

N1 = 1

4ab
(b − x)(a − y) = 1

4

(
1 − x

b

) (
1 − y

a

)
= 1

4
(1 − ζ )(1 − η) (3.90)

where

−1 ≤ ζ ≤ 1 and − 1 ≤ η ≤ 1 (3.91)

are the non-dimensional coordinates of an element (Figure 3.15). The shape functions can
also be obtained using Lagrange interpolation functions (Equation 3.30) as

N1 = (x − b)(y − a)

(−b − b)(−a − a)
= 1

4ab
(b − x)(a − y) = 1

4
(1 − ζ )(1 − η)

N2 = (x − (−b))(y − a)

(b − (−b))(−a − a)
= 1

4ab
(b + x)(a − y) = 1

4
(1 + ζ )(1 − η)

N3 = (x − (−b))(y − (−a))

(b − (−b))(−a − a)
= 1

4ab
(b + x)(a + y) = 1

4
(1 + ζ )(1 + η)

N4 = (x − b)(y − (−a))

(−b − b)(a − (−a))
= 1

4ab
(b − x)(a + y) = 1

4
(1 − ζ )(1 + η) (3.92)

In general, the shape functions can be written as

Ni = (1 + ζ ζi)(1 + ηηi) (3.93)

where (ζi, ηi) are the coordinates of the node ‘i’.
Since the shape functions are linear in the x and y directions, they are referred to as a

bilinear configuration. The derivatives can be expressed as follows:

∂T

∂x
= ∂N1

∂x
T1 + ∂N2

∂x
T2 + ∂N3

∂x
T3 + ∂T4

∂x
T4

= 1

4ab

[−(a − y)T1 + (a − y)T2 + (a + y)T3 − (a + y)T4
]

(3.94)

Similarly,

∂T

∂y
= 1

4ab
[−(b − x)T1 − (b + x)T2 + (b + x)T3 + (b − x)T4] (3.95)
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The gradient matrix can be written as

{g} =




∂T

∂x

∂T

∂y


 = 1

4ab

[−(a − y) (a − y) (a + y) −(a + y)

−(b − x) −(b + x) (b + x) (b − x)

]


T1

T2

T3

T4




= [B]{T} (3.96)

The [B] matrix is written as

[B] = 1

4

[−(1 − η) (1 − η) (1 + η) −(1 + η)

−(1 − ζ ) −(1 + ζ ) (1 + ζ ) (1 − ζ )

]
(3.97)

Example 3.2.3 Determine the temperature and the heat fluxes at a location (2, 1) in a square
plate (Figure 3.16) with the data shown in Table 3.3. Draw the isothermal for 125◦C.

Note that the origin is at node 1. In order to use the shape functions already derived, we
can determine the coordinates of the nodes with the origin at the centre of the square plate.

Note that 2a = 2b = 5.0
The temperature at any point within the element can be expressed as

T = N1T1 + N2T2 + N3T3 + N4T4 (3.98)

The location of the point (2, 1), using the local coordinates and new origin at the centre,
is (−0.5, −1.5). The local co-ordinates of the four corner points are listed in Table 3.4.

4 3

21

(5,5)(0,5)

(0,0) (5,0)

(2,1)

Figure 3.16 Square plate

Table 3.3 Data for Example 3.2.3

Node no. x (cm) y (cm) Temperature (◦C)

1 0.0 0.0 100.0
2 5.0 0.0 150.0
3 5.0 5.0 200.0
4 0.0 5.0 50.0
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Table 3.4 Local coordi-
nates for Example 3.2.3

Node ζ η

1 −2.5 −2.5
2 2.5 −2.5
3 2.5 2.5
4 −2.5 2.5

The shape functions at this point are calculated by substituting the new coordinates of
point (2, 1), that is,

N1 = 1

4ab
(b − x)(a − y) = 12

25

N2 = 1

4ab
(b + x)(a − y) = 8

25

N3 = 1

4ab
(b − x)(a + y) = 2

25

N4 = 1

4ab
(b − x)(a + y) = 3

25
(3.99)

Note that N1 + N2 + N3 + N4 = 1.
Therefore, the temperature at the point (−0.5, −1.5) is

T(−0.5,−1.5) = 12

25
(100) + 8

25
(150) + 2

25
(200) + 3

25
(50) = 118◦C (3.100)

The heat fluxes can be calculated from Equation 3.96 as follows:

{
qx

qy

}
= −




kx

∂T

∂x

ky

∂T

∂y




= − 2

25

[−4.0 4.0 1.0 −1.0
−3.0 −2.0 2.0 3.0

]


100.0
150.0
200.0
50.0




=
{

28.0
4.0

}
W/cm2 (3.101)

The isotherm of 125◦C will not normally be a straight line owing to the bilinear nature
of the elements. Thus, we need more than two points to represent an isotherm. It is certain
that one point on side 1-2 and one on 3-4 will contain a point with a temperature of 125◦C.
We know the y coordinates of both the sides 1-2 and 3-4. Thus, the x coordinate of the point
on side 1-2 which has a temperature of 125◦C is calculated by substituting y = 0.0 into the
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temperature distribution of Equation 3.98, that is,

125.0 = 1

25
[(2.5 − x)(2.5 − 0.0)100.0 + (2.5 + x)(2.5 − 0.0)150

+(2.5 + x)(2.5 + 0.0)200.0 + (2.5 − x)(2.5 + 0.0)50.0] (3.102)

which gives x = 2.5 and similarly, if we substitute a value of y = 5.0 for the side 3-4 the
result is x = 2.5. These coordinates can be written in a local form as (0.0, −2.5) and (0.0,
2.5). From the two points found, it is clear that the 125◦C isotherm crosses all horizontal
lines between the bottom and top sides. Therefore, to determine another point, we can assume
a ‘y’ value of 2.5 (0.0, in local form) and on substituting into Equation 3.98 results in an x

coordinate of 2.5 (0.0, in local form). Connecting all three points will generate the 125◦C
isotherm.

3.2.7 Isoparametric elements

Many practical problems have curved boundaries, and it is often necessary to use a large
number of straight-sided elements along the curved boundaries in order to achieve a reason-
able geometric representation. The number of elements needed can be reduced considerably
if curved elements are used with a consequential reduction in the total number of variables
in the system. In the case of three-dimensional problems, the total number of variables is
inherently large and a reduction in the total number of variables is very important, espe-
cially when there is a limitation on the computer memory/cost involved. While there are
many methods of creating curved elements, the method most extensively used in practice
involves isoparametric mapping from regular elements (Figure 3.17). Since the shape func-
tions of the regular parent element are known in terms of a local coordinate system, those
of the generated curvilinear element can also be determined. The mapping is simple and
straightforward.

y

x

h

z

L1 = 0 L1 = 0
L2 = 0

L2 = 0

L3 = 0
L3 = 0

(−1,1)

(−1,−1) (1,−1)

(1,1)h

z

Figure 3.17 Isoparametric mapping of triangles and quadrilaterals
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There are two sets of relations that must be defined when using the finite element
method. One set determines the shape of the element and the other set defines the order
of the interpolation function for the field variable. It is not necessary to use the same
shape functions for the coordinate transformation and the interpolation equation. Thus, two
different sets of global nodes can exist. Both sets of global nodes are identical in the case
of isoparametric elements.

The natural coordinate system for the one-dimensional element is the length ratio defined
such that −1 ≤ ζ ≤ 1, where ζ is the natural coordinate. The origin of the coordinate is
at the mid-point of the line segment. For a one-dimensional linear element (substituting
x = ζ , x1 = −1 and x2 = 1 into Equation 3.31), we obtain

Ni = ζ − 1

−1 − 1
= 1

2
(1 − ζ )

Nj = ζ − (−1)

1 − (−1)
= 1

2
(1 + ζ ) (3.103)

where i and j are the two nodes of a one-dimensional element. For a one-dimensional
quadratic element, we have (Equation 3.33)

Ni = (ζ − 0)(ζ − 1)

(−1 − 0)(−1 − 1)
= −ζ

2
(1 − ζ )

Nj = (ζ − (−1))(ζ − 1)

(0 − (−1))(0 − 1)
= (1 − ζ 2)

Nk = (ζ − (−1))

(1 − (−1))

(ζ − 0)

(1 − 0)
= ζ

2
(1 + ζ ) (3.104)

where i, j and k represent the three nodes of the quadratic element. In order to calculate
the stiffness matrix, we need the derivative of the shape functions with respect to the global
coordinate, that is, with regard to x in this case. Therefore, a coordinate transformation of
the type shown in Figure 3.17 should be determined. In either case, the functions g(ζ ) and
g(x) are assumed to be one-to-one mappings.

The coordinate transformation can be written using the same functions as given in
Equation 3.104, but substituting the coordinate value for the nodal parameter. Thus, the
coordinate transformation becomes

x = Nixi + Njxj + Nkxk (3.105)

where Ni, Nj and Nk are given by Equation 3.104. The ζ derivative is

dNi

dζ
= dNi

dx

dx

dζ
= dNi

dx
Ji (3.106)

which gives
dNi

dx
= Ji

−1 dNi

dζ
(3.107)
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The quantity (dx/dζ ) is called the Jacobian of the coordinate transformation and is
denoted by [J ]. For a one-dimensional coordinate, transformation [J ] is calculated using

[J ] = dx

dζ
= dNi

dζ
xi + dNj

dζ
xj + dNk

dζ
xk (3.108)

Example 3.2.4 Derive the shape function derivatives for a one-dimensional quadratic ele-
ment that has nodal coordinates xi = 2, xj = 4 and xk = 6.

The Jacobian matrix is written as

[J ] = dx

dζ

= dNi

dζ
xi + dNj

dζ
xj + dNk

dζ
xk

=
(

−1

2
+ ζ

)
2 + (−2ζ )4 +

(
1

2
+ ζ

)
6

= 2 + 8ζ − 8ζ = 2 (3.109)

thus,

[J ]−1 = 1

2
(3.110)

The shape function derivatives are written as follows:


dNi

dx

dNj

dx

dNk

dx




= [J ]−1




dNi

dζ

dNj

dζ

dNk

dζ




= 1

2




−1

2
+ ζ

−2ζ
1

2
+ ζ




=




−1

4
+ ζ

2
−ζ

1

4
+ ζ

2




(3.111)

For two-dimensional cases, we may express x and y as functions of ζ and η, that is,

x = x(ζ, η) and y = y(ζ, η) (3.112)

Since we deal with Cartesian derivatives for the calculation of the stiffness matrix, we
transform the derivatives of the shape functions using the chain rule as follows,

∂Ni

∂ζ
(x, y) = ∂Ni

∂x

∂x

∂ζ
+ ∂Ni

∂y

∂y

∂ζ

∂Ni

∂η
(x, y) = ∂Ni

∂x

∂x

∂η
+ ∂Ni

∂y

∂y

∂η
(3.113)

which can be written as


∂Ni

∂ζ

∂Ni

∂η


 =




∂x

∂ζ

∂y

∂ζ

∂x

∂η

∂y

∂η






∂Ni

∂x

∂Ni

∂y


 = [J]




∂Ni

∂x

∂Ni

∂y


 (3.114)
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Therefore, we can write 


∂Ni

∂x

∂Ni

∂y


 = [J]−1




∂Ni

∂ζ

∂Ni

∂η


 (3.115)

Note that the inverse of the Jacobian matrix [J ]−1 is calculated as

[J]−1 = 1

det [J]




∂y

∂η
− ∂y

∂ζ

−∂x

∂η

∂x

∂ζ


 (3.116)

The derivatives have to be numerically evaluated at each integration point, as a closed-
form solution does not exist

For an eight-node isoparametric element (Figure 3.18) the values of the temperature T

at any point are given by

T =
8∑

i=1

NiTi (3.117)

The coordinate values of x and y at any point within an element are given by the
following expressions.

x(ζ, η) =
8∑

i=1

Ni(ζ, η)xi

y(ζ, η) =
8∑

i=1

Ni(ζ, η)yi (3.118)

where (xi, yi) are the coordinates of the node ‘i’ and the quadratic shape functions are
given by

N1 = −1

4
(1 − ζ )(1 − η)(1 + ζ + η)

N2 = 1

2
(1 − ζ 2)(1 − η)

z

h

1
2

3

4

5
67

8(−1,0)

(−1,1) (0,1)

(1,1)

(1,0)

(0,−1) (1,−1)
(−1,−1)

Figure 3.18 Eight-node isoparametric element
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N3 = 1

4
(1 + ζ )(1 − η)(ζ − η − 1)

N4 = 1

2
(1 + ζ )(1 − η2)

N5 = 1

4
(1 + ζ )(1 + η)(ζ + η − 1)

N6 = 1

2
(1 − ζ 2)(1 + η)

N7 = 1

2
(1 − ζ )(1 + η)(−ζ + η − 1)

N8 = 1

2
(1 − ζ )(1 − η2) (3.119)

The ζ and η variables are curvilinear coordinates and as such their direction will vary
with position. The nodes of the element are input in an anticlockwise sequence starting from
any corner node. The directions of ζ and η are indicated on Figure 3.18, that is, positive
ζ in the direction from nodes 1 to 3 and positive η in the direction from nodes 3 to 5.

Example 3.2.5 Evaluate the partial derivatives of the shape functions at ζ = 1/2, η = 1/2
of a quadrilateral element, assuming that the temperature is approximated by (a) bilinear
and (b) quadratic interpolating polynomials.

(a) Bilinear

The shape function derivatives in local coordinates are

∂N1

∂ζ
= −1 − η

4
; ∂N1

∂η
= −1 − ζ

4

∂N2

∂ζ
= 1 − η

4
; ∂N2

∂η
= −1 + ζ

4

∂N3

∂ζ
= 1 + η

4
; ∂N3

∂η
= 1 + ζ

4

∂N4

∂ζ
= −1 + η

4
; ∂N4

∂η
= 1 − ζ

4
(3.120)

The Jacobian matrix and its inverse are calculated from Equations 3.114 and 3.116,
that is,

[J] =




4∑
i=1

∂Ni

∂ζ
xi

4∑
i=1

∂Ni

∂ζ
yi

4∑
i=1

∂Ni

∂η
xi

4∑
i=1

∂Ni

∂η
yi


 = 1

8

[
25 4
5 14

]
(3.121)

The determinant of the Jacobian matrix is

det [J] = (25)(14)

(8)(8)
− (5)(4)

(8)(8)
= 330

64
(3.122)
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Employing Equation 3.116

[J]−1 = 8

330

[
14 −4
−5 25

]
(3.123)

Substituting ζ = 1/2 and η = 1/2 into Equation 3.120

∂N1

∂ζ
= −1

8
and

∂N1

∂η
= −1

8
(3.124)

Substituting into Equation 3.115


∂N1

∂x

∂N1

∂y


 = 1

330

{−10
−20

}
(3.125)

In a similar fashion, all other nodal derivatives can be calculated.

(b) Quadratic variation

The shape function at node 1 is

N1 = −1

4
(1 − ζ )(1 − η)(ζ + η + 1) (3.126)

The derivatives with respect to the transformed coordinates are

∂N1

∂ζ
= 1

16
and

∂N1

∂η
= 3

16
(3.127)

The derivatives with respect to the global coordinates are


∂N1

∂x

∂N1

∂y


 = 1

660

{
30
60

}
(3.128)

Other derivatives can be established in a similar manner.

It is a simple matter to transform the area coordinate system for triangular elements
(Li, i = 1, 2, 3) to the ζ − η coordinates.

The shape functions for the three-node linear triangle can be expressed in the ζ and η

coordinate system as shown in Figure 3.19, that is,

N1 = L1 = 1 − ζ − η

N2 = L2 = ζ ; 0 ≤ ζ ≤ 1

N3 = L3 = η; 0 ≤ η ≤ 1 (3.129)

For a quadratic triangle with six nodes, the shape functions at the corner codes are

N1 = L1(2L1 − 1) = [2(1 − ζ − η) − 1](1 − ζ − η)

N3 = L2(2L2 − 1) = ζ(2ζ − 1)

N5 = L3(2L3 − 1) = η(2η − 1) (3.130)
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(c)(b)(a)

h

z

h hy

zzx

3

21

21

3 5

6

21 3

4

Figure 3.19 Isoparametric transformation of a single triangular element. (a) Global, (b)
local - linear and (c) local - quadratic

For the mid-side nodes,
N2 = 4L1L2 = 4ζ(1 − ζ − η)

N4 = 4L2L3 = 4ζη

N6 = 4L3L1 = 4η(1 − ζ − η) (3.131)

Consider the linear triangular element shown in Figure 3.19(a).

x(L1, L2) = N1(L1, L2)x1 + N2(L1, L2)x2 + N3(L1, L2)x3

y(L1, L2) = N1(L1, L2)y1 + N2(L1, L2)y2 + N3(L1, L2)y3 (3.132)

Where x1, x2, x3, y1, y2 and y3 are the global coordinates of the three-node triangular
element, which are used for representing the geometry. Replacing the shape functions by
the area coordinate gives

x(L1, L2) = x1L1 + x2L2 + x3(1 − L1 − L2)

y(L1, L2) = y1L1 + y2L2 + y3(1 − L1 − L2) (3.133)

The components of the Jacobian matrix are

[J] =




∂x

∂L1

∂y

∂L1
∂x

∂L2

∂y

∂L2


 =

[
(x1 − x3) (y1 − y3)

(x2 − x3) (y2 − y3)

]
(3.134)

The determinant of the Jacobian matrix is

det [J] = (x1 − x3)(y2 − y3) − (x2 − x3)(y1 − y3) = 2A (3.135)

where A is the area of the element. The inverse of the Jacobian matrix is

[J]−1 = 1

det J

[
(y2 − y3) −(y1 − y3)

−(x2 − x3) (x1 − x3)

]
= 1

2A

[
(y2 − y3) −(y1 − y3)

−(x2 − x3) (x1 − x3)

]
(3.136)

Finally, the derivatives in global coordinates are written as


∂N1

∂x

∂N1

∂y


 = [J]−1




∂N1

∂L1
∂N1

∂L2


 (3.137)
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L2

L1

L3

2

3

4

1

5

6

(1,6)

(3,2)

(0,0)
x x

y y

Figure 3.20 Triangular elements

Example 3.2.6 Calculate ∂N4/∂x and ∂N4/∂y at a point (1, 4) for the quadratic triangu-
lar element shown in Figure 3.20 (left) when the geometry is represented by a three-node
triangle (right).

The coordinates are expressed as

x = x1L1 + x2L2 + x3L3

y = y1L1 + y2L2 + y3L3 (3.138)

After substituting the coordinates of the three points, we have

x = 3L2 + L3

y = 2L2 + 6L3 (3.139)

The determinant of the Jacobian matrix is (Equation 3.135)

det [J] = (−1)(−4) − (2)(−6) = 16 (3.140)

The inverse of the Jacobian is therefore (Equation 3.136)

[J]−1 = 1

16

[−4 6
−2 −1

]
(3.141)

The shape function N4 is given by 4L2L3 = 4L2(1 − L1 − L2)


∂N4

∂x

∂N4

∂y


 = [J]−1




∂N4

∂L1
∂N4

∂L2


 =

{
L2 + 1.5L3

0.5L2 − 0.25L3

}
(3.142)

To determine the local coordinates corresponding to (x, y) = (1, 4), we have the follow-
ing three equations (Equation 3.139):

3L2 + L3 = 1

2L2 + 6L3 = 4

L1 + L2 + L3 = 1 (3.143)
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which gives

L1 = 1

4

L2 = 1

8

L3 = 5

8
(3.144)

Substituting into Equation 3.142 gives


∂N4

∂x

∂N4

∂y


 =




8.5

8
−1.5

16


 (3.145)

Similarly, other derivatives can also be calculated.

3.2.8 Three-dimensional elements

The amount of data required to establish the computational domain and boundary conditions
become significantly greater in three dimensions than for two-dimensional problems. It is
therefore obvious that the amount of computational work/cost increases by a considerable
extent. Therefore, appropriate three-dimensional elements need to be used. The tetrahedron
and brick-shaped hexahedron elements are developed (Figure 3.21) in this section, which
are extensions of the linear triangle and quadrilateral elements in two dimensions.

The linear temperature representation for a tetrahedron element (three-dimensional lin-
ear element) is given by

T = α1 + α2x + α3y + α4z (3.146)

As discussed previously for 2D elements, the constants of Equation 3.146 can be deter-
mined and may be written in the following form:

T = N1T1 + N2T2 + N3T3 + N4T4 (3.147)

1 (−1,−1,−1) 2 (1,−1,−1)

6 (1,−1,1)

3 (1,1,−1)

4 (−1,1,−1)

8 (−1,1,1) 7(1,1,1)

5 (−1,−1,1)

4

1

3

2

3

5

6

4

1
2

(a) (b)
(c)

Figure 3.21 Three-dimensional elements, (a) tetrahedron, (b) hexahedron and (c) prism
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where
Ni = 1

6V
(ai + bix + ciy + diz) with i = 1, 2, 3, 4 (3.148)

The volume of the tetrahedron is expressed as

6V = det




1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4


 (3.149)

Also note that
∂N1

∂x
= b1

6V

∂N1

∂y
= c1

6V

∂N1

∂z
= d1

6V
(3.150)

Therefore, the gradient matrix of the shape functions can be written as

[B] = 1

6V


b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4


 (3.151)

where

b1 = −det


1 y2 z2

1 y3 z3

1 y4 z4


 (3.152)

c1 = −det


x2 1 z2

x3 1 z3

x4 1 z4


 (3.153)

d1 = −det


x2 y2 1

x3 y3 1
x4 y4 1


 (3.154)

Similarly, the other terms in Equation 3.151 can also be determined. We therefore
summarize all the terms as follows:
b-terms

b1 = (y2 − y4)(z3 − z4) − (y3 − y4)(z2 − z4)

b2 = (y3 − y4)(z1 − z4) − (y1 − y4)(z3 − z4)

b3 = (y1 − y4)(z2 − z4) − (y2 − y4)(z1 − z4)

b4 = b1 + b2 + b3 (3.155)
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c-terms
c1 = (x3 − x4)(z2 − z4) − (x2 − x4)(z3 − z4)

c2 = (x1 − x4)(z3 − z4) − (x3 − x4)(z1 − z4)

c3 = (x2 − x4)(z1 − z4) − (x1 − x4)(z2 − z4)

c4 = −(c1 + c2 + c3) (3.156)

d-terms
d1 = (x2 − x4)(y3 − y4) − (x3 − x4)(y3 − y4)

d2 = (x3 − x4)(y1 − y4) − (x1 − x4)(y3 − y4)

d3 = (x1 − x4)(y2 − y4) − (x2 − x4)(y1 − y4)

d4 = −(d1 + d2 + d3) (3.157)

A volume coordinate system for the tetrahedron can be established in a similar manner
as were the area coordinates for a triangle. In the tetrahedron, four distance ratios are used,
each normal to sides L1, L2, L3 and L4.

Note that L1 + L2 + L3 + L4 = 1.
The linear shape functions are related to the volume coordinate as follows:

N1 = L1; N2 = L2; N3 = L3 and N4 = L4 (3.158)

The volume integrals can easily be evaluated from the relationship,∫
V

La
1L

b
2L

c
3L

d
4dV = a!b!c!d!

(a + b + c + d + 3)!
6V (3.159)

For a quadratic tetrahedron,

T = α1 + α2x + α3y + α4z + α5x
2 + α6y

2 + α7z
2 + α8xy + α9yz + α10zx (3.160)

Therefore, ten nodes will exist in a quadratic tetrahedron as shown in Figure 3.22.
The element may also have curved surfaces on the boundaries. As before, the temperature
distribution can be rewritten in terms of the shape functions as

T = N1T1 + N2T2 + N3T3 + N4T4 + N5T5

+N6T6 + N7T7 + N8T8 + N9T9 + N10T10 (3.161)

The shape functions can be expressed in terms of local coordinates as

N1 = L1(2L1 − 1)

N2 = L2(2L2 − 1)

N3 = L3(2L3 − 1)

N4 = L4(2L4 − 1)
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Figure 3.22 Quadratic tetrahedral element

N5 = 4L4L1

N6 = 4L3L4

N7 = 4L3L2

N8 = 4L1L2

N9 = 4L2L4

N10 = 4L1L3 (3.162)

The brick, or hexahedron element shown in Figure 3.21(b), is a simple element, which
is easy to visualize when the domain is discretized. The bilinear interpolation function is

T = α1 + α2x + α3y + α4z + α5xy + α6yz + α7zx + α8xyz (3.163)

which can be written as

T =
8∑

i=1

NiTi (3.164)

where
Ni = 1

8
(1 + ζ ζi)(1 + ηηi)(1 + ρρi) (3.165)

where ζi, ηi and ρi are the local coordinates.
For a quadratic 20-node hexahedron, which can represent arbitrary solids with curved

surfaces as shown in Figure 3.23, the shape functions can be written as follows.
Corner nodes

Ni = 1

8
(1 + ζ ζi)(1 + ηηi)(1 + ρρi)(ζ ζi + ηηi + ρρi − 1) with i = 1, 2, . . . , 8.

(3.166)
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Figure 3.23 20-node hexahedral element

Mid-side nodes

Ni = 1

4
(1 − ζ 2)(1 + ηηi)(1 + ρρi) with i = 9, 13, 15, 11

Ni = 1

4
(1 − η2)(1 + ζ ζi)(1 + ρρi) with i = 10, 14, 16, 12

Ni = 1

4
(1 − ρ2)(1 + ζ ζi)(1 + ηηi) with i = 18, 19, 20, 17 (3.167)

The shape functions for a linear pentahedran element (which is used in cylindrical
geometries) can be generated from the product of triangular and one-dimensional interpo-
lation functions (Refer to Figure 3.21(c)).

N1 = 1

2
L1(1 − w)

N2 = 1

2
L2(1 − w)

N3 = 1

2
L3(1 − w)

N4 = 1

2
L1(1 + w)

N5 = 1

2
L2(1 + w)

N6 = 1

2
L3(1 + w) (3.168)

where w = −1 at the bottom surface and 1 at the top surface. In conclusion, isoparametric
elements are very useful as they can be used for modelling irregular solids and the element
can be mapped onto a unit cube.
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3.3 Formulation (Element Characteristics)

After briefly describing the various elements used in the context of finite element analysis,
we shall now focus our attention on determining the element characteristics, that is, the
relation between the nodal unknowns and the corresponding loads or forces in the form of
the following matrix equation, namely,

[K]{T} = {f} (3.169)

where [K] is the thermal stiffness matrix, {T} is the vector of unknown temperatures and
{f} is the thermal load, or forcing vector.

Several methods are available for the determination of the approximate solution to a
given problem. We shall consider three methods in the first instance.

1. Ritz method (Heat balance integral)

2. Rayleigh Ritz method (Variational)

3. Weighted residual methods.

In order to illustrate the above methods, we shall consider a one-dimensional fin problem
as shown in Figure 3.24.

Heat balance on the differential volume of length dx as shown in Figure 3.24 gives

−kA
dT

dx
|x = hP dx(T − Ta) − kA

dT

dx
|x+dx

= hP dx(T − Ta) − kA
dT

dx
|x − kA

d2T

dx2
dx (3.170)

dx

h Ta

x + dx x
Insulated

L

Figure 3.24 A fin problem
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where k is the thermal conductivity, A is the cross-sectional area, h is the heat transfer
coefficient, P is the perimeter and the suffix a represents atmospheric condition.

Simplifying, the governing differential equation becomes

kA
d2T

dx2
− hP (T − Ta) = 0 (3.171)

with the following boundary conditions:
At x = 0, dT /dx = 0 (tip) and at x = L, T = Tb (base)
Let (T − Ta) = θ , ζ = x/L, hP/kA = m2 and m2L2 = µ2, then the governing equa-

tion reduces to
d2θ

dζ 2
− µ2θ = 0 (3.172)

with the following new boundary conditions:

At ζ = 0, dθ/dζ = 0 and at ζ = 1, θ = θb (3.173)

3.3.1 Ritz method (Heat balance integral method - Goodman’s
method)

An approximate solution of Equation 3.172 along with the appropriate boundary conditions
may be found using the following function:

T ≈ T = T (x, a1, a2, . . . , an) =
n∑

i=1

aiNi(x) (3.174)

which has one or more unknown parameters a1, a2, . . . , an and functions Ni(x) that exactly
satisfy the boundary conditions given by Equation 3.173. The functions Ni(x) are referred
to as trial functions, which must be continuous and differentiable up to the highest order
present in the integral form of the governing equation.

The approximations may be carried out using one, two or n terms as follows:

T = a1N1(x)

T = a1N1(x) + a2N2(x) (3.175)

or

T =
n∑

i=1

aiNi(x) (3.176)

When T is substituted into the governing differential equation, it is not satisfied exactly,
leaving a residual ‘R’. The exact solution results when the residual ‘R’ is zero for all
points in the domain. In approximate solution methods, the residual is not in general zero
everywhere in the domain even though it may be zero at some preferred points.

Let us select a profile that satisfies the boundary conditions (Equation 3.173) in the
global sense. By inspection, we find that

θ(ζ )

θb
= 1 − (1 − ζ 2)B (3.177)

satisfies the boundary conditions, where ‘B’ is an unknown parameter to be determined.
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In the Ritz method, we insert the approximate profile into the governing differential
equation, Equation 3.172, and then the integral of the residual ‘R’ over the domain is
equated to zero to determine the constant B, that is,∫ 1

0

(
d2θ(ζ )

dζ 2
− µ2θ

)
dζ = 0 (3.178)

Differentiating Equation 3.177 gives

d2θ(ζ )

dζ 2
= 2Bθb (3.179)

Substituting Equation 3.179 into Equation 3.178, we have

∫ 1

0
[2B − µ2(1 − {1 − ζ 2}B)] θbdζ =

[
2θbBζ − µ2θb

(
ζ − Bζ + Bζ 3

3

)]1

0

= 2Bθb −
(

1 − B + B

3

)
µ2θb

= 0 (3.180)

which gives

B =
µ2

2

1 + µ2

3

(3.181)

Substituting Equation 3.181 into 3.177 gives the following solution:

θ(ζ )

θb
= 1 − (1 − ζ 2)

µ2

2

1 + µ2

3

(3.182)

For the case of a stainless steel fin (k = 16.66 W/m◦C) of circular cross section with a
diameter of 2 cm and length of 10 cm exposed to a convection environment with h = 25
W/m2◦C and µ2 = 3.0 and m2 = 300, the approximate solution is

θ(ζ )

θb
= 1 − 3

4
(1 − ζ 2) (3.183)

where the exact solution is

θ(ζ )

θb
= cosh m(L − x)

cosh mL
(3.184)

Note that the distance x is taken from the tip of the fin as shown in Figure 3.24. The
comparison between the exact and approximate solutions is given in Figure 3.25. As seen,
the temperatures agree excellently at the base at x = 1 but differ close to the insulated end
at x = 0.
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Figure 3.25 Comparison between the Ritz method and the exact solution

3.3.2 Rayleigh–Ritz method (Variational method)

In the case of the variational method, we make use of an important theorem from the
theory of the calculus of variations, which states, ‘The function T (x) that extremises the
variational integral corresponding to the governing differential equation (called Euler or
Euler–Lagrange equation) is the solution of the original governing differential equation
and boundary conditions’. This implies that the solution obtained is unique, which is the
case for well-posed problems. Thus, the first step is to determine the variational integral
‘I ’, which corresponds to the governing differential equation and its boundary conditions.
The differential equation is, Equation 3.172,

d2θ

dζ 2
− µ2θ = 0 (3.185)

with the following boundary conditions:

dθ(0)

dζ
= 0 and θ(1) = θb (3.186)

Using the differential equation as the Euler–Lagrange equation, we can write

δI =
∫ 1

0

(
d2θ

dζ 2
− µ2θ

)
δθdζ = 0 (3.187)

Integrating by parts gives

[
dθ

dζ
δθ

]1

0
−
∫ 1

0

(
dθ

dζ

)
d

dζ
(δθ)dζ − µ2

∫ 1

0
θδθdζ = 0 (3.188)
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Using the relations
d

dζ
(δθ) = δ

(
dθ

dζ

)

dθ

dζ
δ

(
dθ

dζ

)
= 1

2
δ

(
dθ

dζ

)2

and
θδθ = 1

2
δθ2 (3.189)

Then, Equation 3.188 is simplified to the following:[
dθ

dζ
δθ

]1

0
− 1

2
δ

∫ 1

0

[(
dθ

dζ

)2

+ µ2θ2

]
dζ = 0 (3.190)

When we apply the boundary conditions (Equation 3.186), the first term of the above
equation becomes zero. Thus, the variational formulation for the given problem is

δ

∫ 1

0

1

2

[(
dθ

dζ

)2

+ µ2θ2

]
dζ = 0 (3.191)

and the corresponding variational integral is given by

I =
∫ 1

0

1

2

[(
dθ

dζ

)2

+ µ2θ2

]
dζ (3.192)

Now, the profile that minimizes the integral Equation 3.192 is the solution to the dif-
ferential Equation 3.185 with its boundary conditions given by Equation 3.186.

Let us assume the same profile as before (Equation 3.177) and substitute into
Equation 3.192, that is,

I =
∫ 1

0

1

2
θ2

b {(2Bζ)2 + µ2[1 − (1 − ζ 2)B]2}dζ (3.193)

After integration and substitution of limits, we have

I = 1

2
θb

{
B2
(

4

3
+ µ2 − 2

3
µ2 + 1

5
µ2
)

+ µ2 + B

(
−2µ2 + 2

3
µ2
)}

(3.194)

For I to be minimum, ∂I
∂B

= 0, that is,

∂I

∂B
= 1

2
θb

{
2B

(
4

3
+ µ2 − 2

3
µ2 + 1

5
µ2
)

+ µ2 +
(

−2µ2 + 2

3
µ2
)}

= 0 (3.195)

which gives

2B

(
4

3
+ 8

15
µ2
)

= 4

3
µ2 (3.196)
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Figure 3.26 Comparison between variational method and exact solution

or

B =
µ2

2

1 + 2

5
µ2

(3.197)

Substituting into Equation 3.177 gives the solution as

θ(ζ )

θ
= 1 − (1 − ζ 2)

µ2

2

1 + 2

5
µ2

(3.198)

For the fin problem of the previous subsection with µ2 = 3 and m2 = 300, the com-
parison between the variational method and the exact solution is shown in Figure 3.26. As
seen, the agreement between the solutions is better than the agreement between the exact
and Ritz solutions.

It can be observed from the variational Integral Equation 3.192 that it contains only a
first-order derivative even though the original differential Equation 3.185 contains a second-
order derivative.

If a body has two materials, the second derivative of the temperature, required by the
original differential equation at the point where the two materials meet, may not exist.
In this case, the variational formulation of the problem would readily yield an accurate
solution, since the second derivative in this example is not needed in the formulation. For
this reason, the variational formulation of a physical problem is often referred to as the
weak formulation.

3.3.3 The method of weighted residuals

For those differential equations for which we cannot write a variational formulation, there
is a need to find an alternative method of formulation. The method of weighted residuals
provides a very powerful approximate solution procedure that is applicable to a wide variety
of problems and thus makes it unnecessary to search for variational formulations in order
to apply the finite element method for these problems.
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Let the governing equations be represented by

L(T ) = 0 in 
 (3.199)

Let

T ≈ T =
n∑

i=1

aiNi(x) (3.200)

Substitution of the above equation into Equation 3.199 results in

L(T ) �= 0

= R (residual) (3.201)

The method of weighted residual requires that the parameters a1, a2, . . . , an be deter-
mined by satisfying ∫




wi(x)R dx = 0 with i = 1, 2, . . . , n (3.202)

where the functions wi(x) are the n arbitrary weighting functions. There are an infinite
number of choices for wi(x) but four particular functions are most often used. Depending
on the choice of the weighting functions, different names are given

Collocation: wi = δ(x − xi) ∫



Rδ(x − xi)dx = Rx=xi
= 0 (3.203)

Sub-domain: wi = 1 (Note the sub-domain 
i in the integration)∫

i

R dx = 0 with i = 1, 2, . . . , n (3.204)

Galerkin: wi(x) = Ni(x), that is, the same trial functions as used in T (x)∫



Ni(x)R dx = 0 with i = 1, 2, . . . , n (3.205)

Least Squares: wi = ∂R/∂ai∫



∂R

∂ai

dx = 0 with i = 1, 2, . . . , n (3.206)

For illustration purposes the fin problem is re-solved with each of the above methods.

Collocation method

The weight is wi = δ(x − xi)

Let ζi = 1/2 as there is only one unknown in the fin problem. Rewriting the equation
in collocation form in the non-dimensional coordinates gives the following:∫ 1

0

[
d2θ

dζ 2
− µ2θ

]
δ(ζ − ζi)dζ = 0 (3.207)
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From the above equation, we can write[
d2θ

dζ 2
− µ2θ

]
ζi= 1

2

= 0 (3.208)

Substituting Equation 3.207 into 3.208, with ζ = 1/2, we have

2B − µ2

[
1 −

(
1 − 1

2

2
)

B

]
= 0 (3.209)

which gives

B =

(
µ2

2

)

1 + 3

8
µ2

(3.210)

Substituting into Equation 3.177, the solution is obtained as

θ(ζ )

θb
= 1 − (1 − ζ 2)

(
µ2

2

)

1 + 3

8
µ2

(3.211)

For a problem with µ2 = 3, then

θ(ζ )

θb
= 1 − 12

17
(1 − ζ 2) (3.212)

Sub-domain method

The weighting function wi = 1 that results in the sub-domain formulation being∫ 1

0
(1)

[
d2θ

dζ 2
− µ2θ

]
dζ = 0 (3.213)

Substituting Equation 3.177 and integrating, we get

B =
µ2

2

1 + µ2

3

(3.214)

The solution becomes

θ(ζ )

θb
= 1 − (1 − ζ 2)

(
µ2

2

)

1 + µ2

3

(3.215)

For the particular case of µ2 = 3

θ(ζ )

θb
= 1 − 3

4
(1 − ζ 2) (3.216)
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The result from the sub-domain method coincides with the heat balance integral solution
as in the present case integration is carried out over the entire domain in view of only one
constant being involved.

Galerkin method

This is one of the most important methods used in finite element analysis. The weight
function is Ni(x) = (1 − ζ 2). The Galerkin formulation of the fin equation is∫ 1

0
Ni(x)

[
d2θ

dζ 2
− µ2θ

]
dζ = 0 (3.217)

Substituting Equation 3.177 and integrating, we obtain

2B − 2B

3
+ µ2

(
8

15
B

)
− 2µ2

3
= 0 (3.218)

and

B = µ2

1 + 2

5
µ2

(3.219)

Thus, the solution is

θ(ζ )

θb
= 1 − (1 − ζ 2)

(
µ2

2

)

1 + 2

5
µ2

(3.220)

It can be observed that the solution using Galerkin’s method is exactly the same as that
obtained by the variational method. It can also be shown that the variational and Galerkin
methods give the same results, provided the problem has a classical variational statement.
In fact, later we will see that when the finite element formulation is carried out on a quasi-
harmonic equation, using both the variational and Galerkin methods, the same results are
obtained since a classical variational principle does exist for a quasi-harmonic equation.

Least-squares method

In this case, the minimization of the error is carried out in a least squares sense, that is,
∂

∂ai

∫



R2dx = 0 (3.221)

which can also be written as ∫



∂R

∂ai

dx = 0 (3.222)

where the weighting function is

wi(x) = ∂R

∂ai

(3.223)

and the error E is given by

E =
∫ 1

0
R2dζ

=
∫ 1

0

[
d2θ

dζ 2
− µ2θ

]2

dζ (3.224)
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Substituting Equation 3.177 into Equation 3.224 and integrating, we have

E = 4B2 − 4Bµ

(
1 − 2

3
B

)
+ µ4 − 2Bµ4

(
2

3

)
+ B2

(
8

15

)
µ4 (3.225)

The error is minimized by satisfying ∂E/∂B = 0, that is,

∂E

∂B
= 8B − 4µ4

3
+ 16Bµ4

15
− 4µ2 + 16Bµ2

3
= 0 (3.226)

which gives

B =
µ2

2

(
1 + µ2

3

)

1 + 2µ2

(
1

3
+ µ2

15

) (3.227)

Therefore, the solution is given by

θ(ζ )

θb
= 1 − (1 − ζ 2)

µ2

2

(
1 + µ2

3

)

1 + 2µ2

(
1

3
+ µ2

15

) (3.228)

For the particular problem where µ2 = 3, then

θ(ζ )

θb
= 1 − 15

24
(1 − ζ 2) (3.229)

Figure 3.27 shows the comparison between all the different weighted residual methods.
As seen, the Galerkin method is the most accurate method.
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Figure 3.27 Comparison between various weighted residual methods and exact solution
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3.3.4 Galerkin finite element method

We shall work out the fin problem by using the Galerkin finite element method and dis-
cretizing the domain into five linear elements with a total of six nodal points as shown in
Figure 3.28. Unlike the weighted residual methods discussed in the previous section, we
need no a priori assumption of the temperature profile in this case.

For a linear element,
θ = Niθi + Njθj (3.230)

and
dθ

dζ
= dNi

dζ
θi + dNj

dζ
θj = − 1

ζe

θi + 1

ζe

θj (3.231)

The Galerkin method requires that∫
ζ

Nk

(
d2θ

dζ 2
− µ2θ

)
dζ = 0 (3.232)

where the subscript k represents the nodes in the domain. Integration by parts of the above
equation for one element, with the weight being the shape function at the first node of the
element, results in the following:

ñ

[
Ni

dθ

dζ

]ζe

0
−
∫ ζe

0

dNi

dζ

dNj

dζ
dζ {θ} −

∫ ζe

0
Niµ

2(Niθi + Njθj )dζ (3.233)

where ñ is the outward normal to the boundary. In one dimension, the magnitude of ñ is
unity but the sign changes appropriately. Note the following:∫ ζe

0
N2

i dζ = 2!0!ζe

(2 + 0 + 1)!
= ζe

3∫ ζe

0
NiNj dζ = 1!1!ζe

(1 + 1 + 1)!
= ζe

6
(3.234)

For the first element, with Ni being the weight, Equation 3.233 simplifies to

1

ζe

[
1 −1

] {θi

θj

}
+ µ2ζe

6

[
2 1

] {θi

θj

}
+



dθ

dζ

0


 (3.235)

1

Insulated

Constant temperature

56 4 3 2 1
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x

L = 10 cm

l

5 4 2

Figure 3.28 Heat dissipation from a fin (Figure 3.24). Spatial discretization. Nodes: 6.
Elements: 5
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Note that the outward normal at node 1 is 1. Also, note that the gradient terms of
Equation 3.233 become zero at node j as Ni = 0 at j . Now weighting the equation using
Nj , we have

1

ζe

[−1 1
] {θi

θj

}
+ µ2ζe

6

[
2 1

] {θi

θj

}
+



0
−dθ

dζ


 (3.236)

In this case, the gradient term disappears for node i as Nj is zero at node i. The outward
normal value of point j is −1 (see Figure 3.28). The element characteristics are given by

{
1

ζe

[
1 −1

−1 1

]
+ µ2ζe

6

[
2 1
1 2

]}{
θi

θj

}
+




dθ

dζ

+dθ

dζ


 (3.237)

For the given problem with ζe = 0.2, which is a non-dimensional element length, l/L

(Figure 3.28), and µ2 = 3, the element characteristics for the first element are derived as
follows: [

5.2 −4.9
−4.9 5.2

]{
θi

θj

}
+




dθ

dζ

+dθ

dζ


 (3.238)

In a similar fashion, we can write the element characteristics equation for all the other
four elements. On assembling over all the five elements, we obtain




5.2 −4.9 0.0 0.0 0.0 0.0
−4.9 10.4 −4.9 0.0 0.0 0.0

0.0 −4.9 10.4 −4.9 0.0 0.0
0.0 0.0 −4.9 10.4 −4.9 0.0
0.0 0.0 0.0 −4.9 10.4 −4.9
0.0 0.0 0.0 0.0 −4.9 5.2







θ1

θ2

θ3

θ4

θ5

θ6




=




0.0
0.0
0.0
0.0
0.0
dθ

dζ




(3.239)

where θ1, θ2, . . . , θ6 are the temperature values at all the six nodes. The assembly proce-
dure has already been discussed in the previous chapter. Further details on the assembly
procedure are given in Appendix C. Note that dθ/dζ at node 1 is zero because of the zero
flux boundary condition but we also have the boundary condition at ζ = 1, as θ = 1. The
resulting nodal simultaneous equations can be written as

5.2θ1 − 4.9θ2 = 0.0

−4.9θ1 + 10.4θ2 − 4.9θ3 = 0.0

−4.9θ2 + 10.4θ3 − 4.9θ4 = 0.0

−4.9θ3 + 10.4θ4 − 4.9θ5 = 0.0

−4.9θ4 + 10.4θ5 − 4.9θ6 = 0.0

θ6 = 1.0 (3.240)



THE FINITE ELEMENT METHOD 87

Table 3.5 Comparison of solutions obtained from different methods

Location (ζ ) Exact FEM Collocation Sub-domain Variational Least
5 linear or Galerkin squares
elements

0.0 0.343 0.340 0.294 0.250 0.318 0.375
0.1 0.348 – 0.301 0.258 0.325 0.381
0.2 0.364 0.361 0.322 0.280 0.345 0.400
0.3 0.390 – 0.358 0.316 0.380 0.431
0.4 0.429 0.426 0.407 0.370 0.427 0.475
0.5 0.480 – 0.471 0.438 0.490 0.531
0.6 0.546 0.543 0.548 0.520 0.563 0.600
0.7 0.628 – 0.640 0.618 0.652 0.681
0.8 0.729 0.727 0.746 0.730 0.755 0.755
0.9 0.851 – 0.866 0.858 0.870 0.881
1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note that the last equation arises because of the constant temperature boundary condition
at node 6. On solving the system of equations using Gaussian elimination, we finally obtain
all the θ values. Table 3.5 shows the comparison between the exact result and all the other
computations from each of the different methods.

It can be observed from Table 3.5 that the methods used in conjunction with the assumed
profile satisfying the boundary conditions for the entire domain are less accurate compared
to the finite element method solution even with only five linear elements. It can also be
observed that the nodal values in the finite element method solution are very close to those
of the exact solution.

3.4 Formulation for the Heat Conduction Equation
In many practical situations, finding the temperature in a solid body is of vital importance
in terms of the maximum allowable temperature, for example, as in semiconductor devices,
maximum allowable displacement, for example, as in steam and gas turbines, maximum
allowable thermal stress and the maximum number of repeated thermal cycles in fatigue-
dominated problems. In this section, we shall give the derivation of the finite element
equations, both by the variational method as well as the Galerkin method, for the three-
dimensional heat conduction equation of stationary systems under steady state conditions.

The governing differential equation, as given in Chapter 2, is

∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
+ ∂

∂z

(
kz

∂T

∂z

)
+ G = 0 (3.241)

with the following boundary conditions
T = Tb on surface S1

kx

∂T

∂x
l̃ + ky

∂T

∂y
m̃ + kz

∂T

∂z
ñ + q = 0 on surface S2
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kx

∂T

∂x
l̃ + ky

∂T

∂y
m̃ + kz

∂T

∂z
ñ + h(T − Ta) = 0 on surface S3 (3.242)

where l̃, m̃ and ñ are surface normals, h is the heat transfer coefficient, k is the thermal
conductivity and q is the heat flux.

3.4.1 Variational approach

The variational integral, I , corresponding to the above differential equation with its bound-
ary conditions is given by

I (T ) = 1

2

∫



[
kx

(
∂T

∂x

)2

+ ky

(
∂T

∂y

)2

+ kz

(
∂T

∂z

)2

− 2GT

]
d


+
∫

S2

qT ds +
∫

S3

1

2
h(T − Ta)

2ds (3.243)

The given domain 
 is divided into ‘n’ number of finite elements with each element
having ‘r’ nodes. The temperature is expressed in each element by

T e =
r∑

i=1

NiTi = [N]{T} (3.244)

where [N] = [Ni, Nj , . . . , Nr ] = shape function matrix and

{T} =




Ti

Tj

. . .

Tr


 (3.245)

is the vector of nodal temperatures.
The finite element solution to the problem involves selecting the nodal values of T so

as to make the function I (T ) stationery. In order to make I (T ) stationery, with respect to
the nodal values of T , we require that

δI (T ) =
n∑

i=1

∂I

∂Ti

= 0 (3.246)

where n is the total number of discrete values of T assigned to the solution domain. Since
Ti are arbitrary, Equation 3.246 holds good only if

∂I

∂Ti

= 0 for i = 1, 2, . . . , n (3.247)

The functional I (T ) can be written as a sum of individual functions, defined for the
assembly of elements, only if the shape functions giving piece-wise representation of T
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obey certain continuity and compatibility conditions. These conditions will be discussed
later in the text.

I (T ) =
n∑

e=1

I e(T e) (3.248)

Thus, instead of working with a functional defined over the whole solution region, our
attention is now focused on a functional defined for the individual elements. Hence,

δI =
n∑

e=1

δI e = 0 (3.249)

where the variation in I e is taken only with respect to the r nodal values associated with
the element e, that is, {

∂I e

∂T

}
= ∂I e

∂Tj

= 0 with j = 1, 2, . . . , r (3.250)

Equation 3.250 comprises a set of r equations that characterize the behavior of the
element e. The fact that we can represent the functional for the assembly of elements
as a sum of the functional for all individual elements provides the key to formulating
individual element equations from a variational principle. The complete set of assembled
finite element equations for the problem is obtained by adding all the derivatives of I , as
given by Equation 3.250, for all the elements. We can write the complete set of equations as

∂I

∂Ti

=
n∑

e=1

∂I e

∂Ti

= 0 with i = 1, 2, . . . , M (3.251)

The problem is complete when the M set of equations are solved simultaneously for
the M nodal values of T . We now give the details for formulating the individual finite
element equations from a variational principle.

I e = 1

2

∫



[
kx

(
∂T e

∂x

)2

+ ky

(
∂T e

∂y

)2

+ kz

(
∂T e

∂z

)2

− 2GT e

]
d


+
∫

S2e

qT eds +
∫

S3e

1

2
h(T e − Ta)

2ds (3.252)

with

T e = [N]{T} = [N1, N2, . . . , Nr ]




T1

T2

. . .

Tr


 = N1T1 + N2T2 + · · ·NrTr (3.253)

and
∂T e

∂T1
= N1
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∂T e

∂T2
= N2

∂T e

∂Tr

= Nr (3.254)

or

∂T e

∂{T} =




N1

N2

. . .

Nr


 = {N} = [N]T (3.255)

The gradient matrix is written as

{g} =




∂T e

∂x

∂T e

∂y

∂T e

∂z




=




∂N1

∂x

∂N2

∂x
. . .

∂Nr

∂x

∂N1

∂y

∂N2

∂y
. . .

∂Nr

∂y

∂N1

∂z

∂N2

∂z
. . .

∂Nr

∂z







T1

T2

· · ·
Tr


 = [B]{T} (3.256)

Consider

{g}T [D]{g} =
{

∂T e

∂x

∂T e

∂y

∂T e

∂z

}kx 0 0
0 ky 0
0 0 kz







∂T e

∂x

∂T e

∂y

∂T e

∂z




= kx

(
∂T e

∂x

)2

+ ky

(
∂T e

∂y

)2

+ kz

(
∂T e

∂z

)2

(3.257)

substituting into Equation 3.252, we have

I e = 1

2

∫



[
{g}T [D]{g} − 2GT e

]
d
 +

∫
S2e

qT eds +
∫

S3e

1

2
h(T e − Ta)

2ds (3.258)

From Equation 3.256 we can substitute {g}T [D]{g} = {T}T [B]T [D][B]{T} and mini-
mizing the integral, we have (employing Equation 3.255)

∂I e

∂{T} =
∫




1

2
2[B]T [D][B]{T}d
 −

∫



1

2
2G[N]T {T}d


+
∫

S2e

q[N]T {T}ds +
∫

S3e

h[N]T {T}ds

−
∫

S3e

h[N]T Tads = 0 (3.259)
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The above equation can be written in a compact form as

[K]{T} = {f} (3.260)

where

[K] =
∫




[B]T [D][B]d
 +
∫

S3

h[N]T [N]ds

{f} =
∫




G[N]T d
 −
∫

S2

q[N]T ds +
∫

S3

hTa[N]T ds (3.261)

Equations 3.260 form the backbone of the calculation method for a finite element analy-
sis of heat conduction problems. It can be easily noted that when there is no heat generation
within an element (G = 0), the corresponding term disappears. Similarly, for an insulated
boundary (i.e., q = 0 or h = 0) the corresponding term again disappears. Thus, for an insu-
lated boundary, we do not have to specify any contribution, but leave it unattended. In this
respect, this is a great deal more convenient as compared to the finite difference method,
where nodal equations have to be written for insulated boundaries.

3.4.2 The Galerkin method

The method requires that the following expression be satisfied:∫



wkL(T )d
 = 0 (3.262)

where the weight wk is replaced by the shape functions at nodes, Nk(x), that is,∫



Nk

{
∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
+ ∂

∂z

(
kz

∂T

∂z

)
+ G

}
d
 = 0 (3.263)

Integration by parts is often essential when dealing with second-order derivatives. Using
Green’s lemma (see Appendix A), we can rewrite the second derivatives in two parts as∫




Nk

∂

∂x

(
kx

∂T

∂x

)
d
 =

∫
S

Nk

(
kx

∂T

∂x

)
ds −

∫



∂Nk

∂x
kx

∂Nm

∂x
{T m}d
 (3.264)

where m represents nodes. With the boundary conditions (3.242), we can rewrite
Equation 3.263 as

−
∫




(
kx

∂Nk

∂x

∂Nm

∂x
+ ky

∂Nk

∂y

∂Nm

∂y
+ kz

∂Nk

∂z

∂Nm

∂z

)
{T m}d


+
∫




GNkd
 −
∫

S

Nkqds +
∫

S

hNkNm{T m}ds +
∫

S

hTaNkds = 0 (3.265)

Now collecting the coefficients of the nodal variables {T m}, we get

[K]{T } = {f} (3.266)

or
[Kkm]{T m} = {fk} (3.267)
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where

Kkm = −
∫




(
kx

∂Nk

∂x

∂Nm

∂x
+ ky

∂Nk

∂y

∂Nm

∂y
+ kz

∂Nk

∂z

∂Nm

∂z

)
d


+
∫

S

hNkNmdS

fk =
∫




GNkd
 −
∫

S

qNkdS +
∫

S

hTaNkdS (3.268)

It may be observed that Equations 3.260 and 3.266 are identical, which substantiates
the fact that both the variational and Galerkin methods give the same result because there
exists a classical variational integral for the heat conduction equation.

3.5 Requirements for Interpolation Functions

The procedure for formulating the individual element equations from a variational princi-
ple and the assemblage of these equations relies on the assumption that the interpolation
functions satisfy the following requirements. This arises from the need to ensure that
Equation 3.248 holds and that our approximate solution converges to the correct solution
when we use an increasing number of elements, that is, when we refine the mesh.

a. Compatibility: At element interfaces, the field variable T and any of its partial derivatives
up to one order less than the highest-order derivative appearing in I (T ) must be continuous.

b. Completeness: All uniform states of T and its partial derivatives up to the highest order
appearing in I (T ) should have representation in T , when in the limit the element size
decreases to zero.

If the field variables are continuous at the element interfaces, then we have C0 conti-
nuity. If, in addition, the first derivatives are continuous, we have C1 continuity, and if the
second derivatives are continuous, then we have C2 continuity, and so on. If the functions
appearing in the integrals of the element equations contain derivatives up to the (r + 1)th
order, then to have a rigorous assurance of convergence as the element size decreases, we
must satisfy the following requirements.

For compatibility: At the element interfaces, we must have Cr continuity.

For completeness: Within an element, we must have Cr+1 continuity.
These requirements will hold regardless of whether the element equations (integral

expressions) were derived using the variation method, the Galerkin method, the energy
balance methods or any other method yet to be devised. These requirements govern
the selection of proper interpolation functions depending on the order of the differential
equation. Thus, for a conduction heat transfer problem, the highest derivative in I is of the
first order. Thus, the shape function selected should provide for the continuity of temper-
ature at the interface between two elements and also ensure the continuity of temperature
and heat flux within each element.

In addition to the requirements of continuity of the field variable and convergence to the
correct solution as the element size reduces, we require that the field variable representation
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(polynomials used) within an element remain unchanged under a linear transformation
from one Cartesian coordinate system to another. Polynomials that exhibit this invariance
property are said to possess ‘Geometric Isotropy’. Clearly, we cannot expect a realistic
approximation if our field variable representation changes with respect to a movement in
origin, or in the orientation of the coordinate system. Hence, the need to ensure geometric
isotropy in our polynomial interpolation functions is apparent. Fortunately, we have two
simple guidelines that allow us to construct polynomial series with geometric isotropy.
These are as follows:

(i) Polynomials of order ‘n’ that are complete, that is, those that contain all terms have
geometric isotropy. The triangle family satisfies this condition whether it be a linear,
quadratic or cubic form.

(ii) Polynomials of order ‘n’ that are incomplete yet contain the appropriate terms to
preserve ‘symmetry’ have geometric isotropy. We neglect only these terms that occur
in symmetric pairs that is, (x3, y3), (x2y, xy2), and so on.

Example: For an eight-node element, the following polynomial, P , satisfies geometric
isotropy, that is,

P (x, y) = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 (3.269)

with either
α7x

3 + α8y
3 (3.270)

or
α7x

2y + α8y
2x (3.271)

added to it.

Example 3.5.1 Before concluding this chapter, it is important to consider a numerical prob-
lem for illustrating the theory presented. For this purpose, we consider again a fin problem
as shown in Figure 3.29. The linear variation for the temperature within each finite element
is assumed. We shall derive the element equations from the most general formulation given

100°C

Insulatedx
2 cm

3mm

2 mm

k = 200 W/m°C

h = 120 W/m2 °C; Ta = 25°C

Figure 3.29 Heat transfer from a rectangular fin
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Table 3.6 Element and node numbers
of linear one-dimensional elements

Element No. Node i Node j

1 1 2
2 2 3
e i j

n n n + 1

in Section 3.4 and determine the temperature distribution, heat dissipation capacity and the
efficiency of the fin, assuming that the tip is insulated.

Since we are using linear elements, the element will only have two nodes. First, we
divide the given length of the fin into number of divisions—say ‘n’ elements. Therefore, we
will have (n + 1) nodes to represent the fin (see Table 3.6).

The variation of temperature in the elements is linear. Hence,

T = NiTi + NjTj (3.272)

and the first derivative is given by

dT

dx
= dNi

dx
Ti + dNj

dx
Tj

= −1

l
Ti + 1

l
Tj (3.273)

that is, the gradient matrix is

g = dT

dx
= [− 1

l
1
l

] {Ti

Tj

}
= [B]{T} (3.274)

where

[B] = 1

l

[−1 1
]

(3.275)

With the above relationships, we can write the relevant element matrices as follows:

[K]e =
∫

l

1

l

[−1
1

]
[kx]

1

l

[−1 1
]
Adx +

∫
S

h

[
Ni

Nj

] [
Ni Nj

]
P dx (3.276)

Where A is the cross-sectional area of the fin and P is the perimeter of the fin from
which convection takes place. Note that [D] = kx for one-dimensional problems.

Rearranging Equation 3.276, we have

[K]e =
∫

l

Akx

l2

[
1 −1

−1 1

]
dx +

∫
l

hP

[
N2

i NiNj

NiNj N2
j

]
dx (3.277)
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Here Ni = Li and Nj = Lj , which is generally true for all linear elements. Hence, we
can make use of the formula ∫

l

La
i L

b
j dl = a!b!l

(a + b + 1)!
(3.278)

For example, ∫
l

N2
i dl =

∫
l

L2
i dl = 2!0!l

(2 + 0 + 1)!
= l

3
(3.279)

and other terms can be similarly integrated.
If A, kx, P and h are all assumed to be constant throughout the element (see Figure 3.29),

we obtain the following [K] matrix:

[K]e = Akx

l

[
1 −1

−1 1

]
+ hP l

6

[
2 1
1 2

]
(3.280)

Let us next consider the thermal loading. From Equation 3.261, we can write

{f}e = GAl

2

{
1
1

}
− qP l

2

{
1
1

}
+ hTaP l

2

{
1
1

}
(3.281)

In this case, the loads are distributed equally between the two nodes, which is a general
characteristic of linear elements.

The solution of the given problem may be found by substitution of the numerical values.
(a) First let us consider a one-element solution for the case where l = 2 cm, as shown

in Figure 3.30. The element stiffness matrix is

[K]e = Akx

l

[
1 −1

−1 1

]
+ hP l

6

[
2 1
1 2

]

=
[

0.06 −0.06
−0.06 0.06

]
+
[

0.008 0.004
0.004 0.008

]

=
[

0.068 −0.056
−0.056 0.068

]
(3.282)

and the loading term is given by

{f} = hP lTa

2

{
1
1

}

=
{

0.30
0.30

}
(3.283)

2

L = l = 2 cm

1

Figure 3.30 Heat transfer from a rectangular fin. One linear element
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Note that Ta is in ◦C as h is expressed in W/m2◦C.
Since only one element is employed, no assemblage of element contribution is necessary.

Thus, the simultaneous equation system may be written as[
0.068 −0.056

−0.056 0.068

]{
T1

T2

}
=
{

0.30
0.30

}
(3.284)

We now incorporate the known base temperature of 100◦C at node 1. It is done in such
a way that the symmetry of the [K] matrix is retained. This is essential if a symmetric matrix
solution procedure is employed in the solution of the simultaneous equations. The following
steps give a typical implementation procedure for the temperature boundary condition:

(i) The diagonal element of the first row is assigned a value of 1 and the remaining
elements on that row are zero.

(ii) Replace the first row value of the loading vector f by the known value of T1, that is,
100.

(iii) In order to retain the symmetry, the first term of the second row in the [K] matrix is
transferred to the right-hand side and replaced with a zero value as given below:[

1.0 0.0
0.0 0.068

]{
T1

T2

}
=
{

100.0
0.30 + 0.056(100.0)

}
(3.285)

The equation to be solved is

0.068T2 = 0.3 + 0.056(100) (3.286)

Therefore, the solution is T1 = 100◦C and T2 = 86.765◦C.
Heat dissipated is

Q = kA

l
(T1 − T2) = 0.7941 W (3.287)

The above answer is very approximate. However, a more accurate value can be deter-
mined by using the following convection condition, that is,

Q =
M∑

e=1

hP l

(
T1 + T2

2
− Ta

)
= 1.64 W (3.288)

where M is the total number of elements. The maximum theoretically possible heat transfer
is

Qmax =
M∑

e=1

hP l (T1 − Ta) = 1.8 W (3.289)

The efficiency is defined as

ηf = Q

Qmax
= 1.64

1.80
= 91.11% (3.290)
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The exact solution for this problem is

Qexact = kAm(Tb − Ta) tanh (kml) = 1.593 W (3.291)

where m = √
hP/kA = 31.62. Therefore, the exact fin efficiency is

(ηf )exact = Q

Qexact
= 88.48%. (3.292)

(b) Let us consider a two-element solution of the same problem (3 nodes)
The length of the fin is divided equally into two elements, that is, l = 1.0 cm.
The stiffness matrix calculation is similar to the one for the single-element case, that is,

[K1] = [K2] =
[

0.124 −0.118
−0.118 0.124

]
(3.293)

and the loading vectors are

{f1} = {f2} =
{

0.15
0.15

}
(3.294)

On assembly we obtain


 0.124 −0.118 0.0

−0.118 0.124 + 0.124 −0.118
0.0 −0.118 0.124






T1

T2

T3


 =




0.15
0.15 + 0.15

0.15


 (3.295)

Now we have to incorporate the known value of base temperature, that is, T1 = 100◦C.


1.0 0.0 0.0

0.0 0.248 −0.118
0.0 −0.118 0.124






T1

T2

T3


 =




100.0
0.30 + 0.118(100)

0.15


 (3.296)

Therefore, the two equations to be solved are

0.248T2 − 0.118T3 = 12.1

and
−0.118T2 + 0.124T3 = 0.15

Solving these equations, we get T2 = 90.209◦C, T3 = 87.057◦C.
Results, which have been generated using different number of elements are tabulated in

Tables 3.7 and 3.8.
As can be seen, the two-element solution is very good and is further improved with the

use of four elements. As a first idealization, even the one element solution is reasonably
good considering the small effort involved.
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Table 3.7 Summary of results—temperatures

x mm Exact 1 element 2 elements 4 elements

0.0 100.00 100.00 100.00 100.00
5.0 94.28 – – 94.26

10.0 90.28 – 90.209 90.25
15.0 87.93 – – 87.908
20.0 87.15 86.77 87.07 87.128

Table 3.8 Summary of results—
heat dissipated and efficiency

case Q(W) ηf

1 element 1.640 91.11
2 elements 1.604 89.11
4 elements 1.596 88.65
Exact 1.590 88.48

3.6 Summary

In this chapter, we have discussed the basic principles of the finite element method as
applied to heat transfer problems. Different types of elements have been discussed and
various examples have been presented. In the authors’ opinion, this is the most important
chapter for beginners. Readers already familiar with the topic of finite elements may find it
trivial to follow but it would be beneficial for the novice to work out the exercises provided
in the following section.

3.7 Exercise

Exercise 3.7.1 A one-dimensional linear element is used to approximate the temperature
variation in a fin. The solution gives the temperature at two nodes i and j of an element
as 100 and 80◦C respectively. The distance from the origin to node i is 6 cm and to node
j is 10 cm. Determine the temperature at a point 9 cm from the origin. Also, calculate the
temperature gradient in the element. Show that the sum of the shape functions at the location
9 cm from the origin is unity.

Exercise 3.7.2 A one-dimensional quadratic element is used to approximate the temperature
distribution in a long fin. The solution gives the temperature at three nodes as 100, 90, and
80◦C at distances of 10, 15 and 20 cm respectively from the origin. Calculate the temperature
and temperature gradient at a location of 12 cm from the origin.

Exercise 3.7.3 During the implementation of the finite element method, the evaluation of
the integrals that contain shape functions and their derivatives are required. Evaluate the
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following integrals for a linear one-dimensional element:∫
l

Nidl;
∫

l

N2
i dl;

∫
l

dNi

dx

dNj

dx
dl;
∫

l

N3
i dl;

∫
l

NiNj dl (3.297)

Exercise 3.7.4 Derive the shape functions for a one-dimensional linear element in which
both the temperature and the heat fluxes should continuously be varying in the element.
(Note that degrees of freedom for a one-dimensional linear element are Ti , qi , Tj , qj .)

Exercise 3.7.5 The solution for temperature distribution in a linear triangle gives the nodal
temperature as Ti = 200◦C, Tj = 180◦C and Tk = 160◦C. The coordinates of i, j and k are
(xi = 2 cm, yi = 2 cm), (xj = 6 cm, yj = 4 cm) and (xk = 4 cm, yk = 6 cm). Calculate the
temperature at a location given by x = 3 cm and y = 4 cm. Calculate the coordinates of
the isotherm corresponding to 170◦C. Calculate the heat flux in the x and y directions if
the thermal conductivity is 0.5 W/m◦C. Also, show that the sum of the shape functions at
(x = 3 cm, y = 4 cm) is unity.

Exercise 3.7.6 For a one-dimensional quadratic element evaluate the integrals (Note : con-
vert Ni , Nj and Nk to local coordinates and then integrate.)∫

l

Nidl;
∫

l

Nj dl;
∫

l

Nkdl;
∫

l

NiNj dl (3.298)

Exercise 3.7.7 The nodal values for a rectangular element are given as follows,
xi = 0.25 cm, yi = 0.20 cm, xj = 0.30 cm, ym = 0.25 cm, Ti = 150◦C, Tj = 120◦C,
Tk = 100◦C, Tm = 110◦C Calculate (a) The temperature at the point C(x = 0.27 cm,
y = 0.22 cm). (b) x, y coordinates of the isotherm 130◦C (c) Evaluate ∂T /∂x and ∂T /∂y

at the point C.

Exercise 3.7.8 Calculate the shape functions for the six-node rectangle shown in Figure 3.31.

Exercise 3.7.9 Evaluate the partial derivatives of the shape functions at ψ = 1/4 and η =
1/2 of a quadrilateral element shown in Figure 3.32 assuming that the temperature is approx-
imated by (a) Bilinear (b) Quadratic interpolating polynomials.

Exercise 3.7.10 Calculate the derivatives ∂N6/∂x and ∂N6/∂y at the point (2, 5) for a
quadratic triangle element, when the geometry is represented by a three-node triangle as
shown in Figure 3.33.

4

3 cm

3 cm 3 cm

1 2 3

5 6

Figure 3.31 Rectangular element
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i (1,1)

m (2,3.5)

k (4,4)

j (5,2)

Figure 3.32 Quadrilateral element

(2,7)

(4,3)

(1,1)

Figure 3.33 Triangular element

Exercise 3.7.11 In a double pipe heat exchanger, hot fluid flows inside a pipe and cold fluid
flows outside in the annular space. The heat exchange between the two fluids is given by the
differential equations, (refer to Exercise 2.5.12)

C1
dTh

dA
= −U(Th − Tc)

C2
dTc

dA
= U(Th − Tc) (3.299)

Develop the stiffness matrix and forcing vector using (a) Sub-domain method (b)
Galerkin method.

Exercise 3.7.12 Calculate (using one, two and four elements) the temperature distribution
and the heat dissipation capacity of a fin of length 4 cm and cross-sectional dimensions of
6 mm × 4 mm with a heat transfer coefficient of 0.1 W/m2◦C and a thermal conductivity of
the material of the fin as 0.5 W/m◦C. Base temperature is 90◦C.
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4

Steady State Heat Conduction
in One Dimension

4.1 Introduction

A one-dimensional approximation of the heat conduction equation is feasible for many
physical problems, for example, plane walls, fins, and so on (Bejan 1993; Holman 1989;
Incropera and Dewitt 1990; Ozisik 1968). In these problems, any major temperature vari-
ation is in one direction only and the variation in all other directions can be ignored.
Other examples of one-dimensional heat transfer occur in cylindrical and spherical solids
in which the temperature variation occurs only in the radial direction. In this chapter, such
one-dimensional problems are considered for steady state conditions, in which the temper-
ature does not depend on time. Time-dependent and multi-dimensional problems will be
discussed in later chapters.

4.2 Plane Walls

4.2.1 Homogeneous wall

The differential equations that govern the heat conduction through plane walls have already
been discussed in Chapter 1. The steady state heat conduction equation for a plane wall,
shown in Figure 4.1, is

kA
d2T

dx2
= 0 (4.1)

where k is the thermal conductivity and A is the cross-sectional area perpendicular to
the direction of heat flow. The problem is complete with the following description of the

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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x = 0 x = L

T1 T2

L

k

Figure 4.1 Heat conduction through a homogeneous wall

boundary conditions:

At x = 0, T = T1; and at x = L, T = T2

The exact solution to Equation 4.1 is

kAT = C1x + C2 (4.2)

On applying the appropriate boundary conditions to Equation 4.3, we obtain

C2 = kAT 1 (4.3)

and

C1 = −kA(T1 − T2)

L
(4.4)

Therefore, substituting constants C1 and C2 into Equation 4.3 results in

T = − (T1 − T2)

L
x + T1 (4.5)

The above equation indicates that the temperature distribution within the wall is linear.
The heat flow, Q, can be written as

Q = −kA
dT

dx
= −kA

L
(T2 − T1) (4.6)

4.2.2 Composite wall

Even if more than one material is used to construct the plane wall, as shown in Figure 4.2,
at steady state, the heat flow will be constant (conservation of energy), that is,

Q = −k1A

x1
(T2 − T1) = −k2A

x2
(T3 − T2) = −k3A

x3
(T4 − T3) (4.7)
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h, Ta

qa

T1 T2 T3 T4

x1 x2 x3

Figure 4.2 Heat conduction in a composite wall

Rearranging, we obtain

Q

k1A

x1

= −(T2 − T1)

Q

k2A

x2

= −(T3 − T2)

Q

k3A

x3

= −(T4 − T3) (4.8)

Adding the above equations and rearranging,

Q = (T1 − T4)[
x1

k1A
+ x2

k2A
+ x3

k3A

] (4.9)

The numerator in the above equation is often referred to as the thermal potential differ-
ence and the denominator is known as the thermal resistance. In general, all x/kA terms
are called thermal resistances (See Figure 4.2). If there is a convective resistance, say on
the right face, then we have (Q = hA(T4 − Ta)).

Q = (T1 − Ta)

x1

k1A
+ x2

k2A
+ x3

k3A
+ 1

hA

(4.10)

where h is the heat transfer coefficient from the right wall surface to the atmosphere
and Ta is the atmospheric temperature. Let us now consider a finite element solution
for Equation 4.1. As shown in Equation 4.6, the temperature distribution is linear for a
homogeneous material.
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i

l

Ti h, Ta

j

Figure 4.3 Heat conduction through a homogeneous wall subjected to heat convection
on one side and constant temperature on the other. Approximation using a single linear
element

4.2.3 Finite element discretization

If we consider a typical homogeneous slab as shown in Figure 4.1, with nodes ‘i’ and ‘j ’
on either side (see Figure 4.3), we can write

T = NiTi + NjTj (4.11)

where
Ni = xj − x

xj − xi

and Nj = x − xi

xj − xi

(4.12)

In local coordinates,

Ni = 1 − x

l
and Nj = x

l
(4.13)

and the temperature derivative is

dT

dx
= −1

l
Ti + 1

l
Tj

=
[
−1

l

1

l

]{
Ti

Tj

}
= [B]{T} (4.14)

where l is the length of the element.
The elemental stiffness matrix (Chapter 3) is given as

[K]e =
∫




[B]T[D][B] d
 +
∫

As

h[N]T[N] dAs

=
∫

l

[B]T[D][B]A dx +
∫

As

h[N]T[N] dAs (4.15)

where 
 is the volume integral, As indicates surface area and h is the convective heat
transfer coefficient. After integration,

[K]e = Akx

l

[
1 −1

−1 1

]
+ hAs

[
0 0
0 1

]
(4.16)

In a one-dimensional problem, [D] has only one entry, which is equal to kx .
Note that the convective heat transfer boundary condition is assumed to act on the right

face where Ni = 0 and Nj = 1. This is the reason we have hAs added to the last nodal
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equation in Equation 4.16. In the plane wall problems considered here, the cross-sectional
area A and convective surface area As are equal.

The forcing vector can be written as

{f}e =
∫




G[N]T d
 −
∫

As

q[N]T dAs +
∫

As

hT a[N]T dAs (4.17)

where G is the internal heat generation per unit volume, q is the boundary surface heat flux
and Ta is the atmospheric temperature. If G = 0, then there is no heat generation inside
the slab. The no heat flux boundary condition is denoted by q = 0. If neither internal
heat generation nor external heat flux boundary conditions occur, then the finite element
equation for a homogeneous slab (Figure 4.3) with only two nodes becomes{

kxA

l

[
1 −1

−1 1

]
+ hA

[
0 0
0 1

]}{
Ti

Tj

}
=
{

0
hT aA

}
(4.18)

The element equations can now be written for each slab of the composite wall shown
in Figure 4.2 separately and may be assembled. If we assume a discretization as shown in
Figure 4.4, we obtain the following element equations:

Element 1—(Slab 1)

[K]1 =




k1A

x1
−k1A

x1

−k1A

x1

k1A

x1


 ; {f}1 =

{
qA
0

}
(4.19)

Element 2—(Slab 2)

[K]2 =




k2A

x2
−k2A

x2

−k2A

x2

k2A

x2


 ; {f}2 =

{
0
0

}
(4.20)

Element 3—(Slab 3)

[K]3 =




k3A

x3
−k3A

x3

−k3A

x3

k3A

x3
+ hA


 ; {f}3 =

{
0

hAT a

}
(4.21)

q

x1 x2 x3

1 2 3 4

L

1 2 3 h, Ta

Figure 4.4 Heat conduction through a composite wall subjected to heat convection on one
side and constant heat flux on the other side. Approximation using three linear elements
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Assembly gives (see Appendix C)


k1A

x1
−k1A

x1
0 0

−k1A

x1

(
k1A

x1
+ k2A

x2

)
−k1A

x2
0

0 −k2A

x2

(
k2A

x1
+ k3A

x3

)
k3A

x3

0 0 −k3A

x3

k3A

x3
+ hA







T1

T2

T3

T4


 =




qA
0
0

hAT a


 (4.22)

A solution of the above system of simultaneous equations will result in the values of
T1, T2, T3 and T4. In a similar way, we can extend this solution method to any number of
materials that might constitute a composite wall. Note that the heat flux imposed on the
left-hand face is q.

4.2.4 Wall with varying cross-sectional area

Let us now consider a case in which the cross-sectional area varies linearly from section
‘i’ to ‘j ’ as shown in Figure 4.5.

Let Ai and Aj be the areas of cross section at distances xi and xj respectively. There-
fore, the area A at an intermediate distance x is given by

A = Ai − x

l
(Ai − Aj) (4.23)

Rearranging, we obtain

A = Ai

(
1 − x

l

)
+ x

l
Aj

= AiNi + AjNj (4.24)

Thus, the linear variation of area with distance can be represented in terms of the
areas at the points ‘i’ and ‘j ’, using the same shape functions. The stiffness matrix for the

b1
b2

t

t

l

Ai Aj

x

Figure 4.5 Heat conduction through a wall with linearly varying area of cross section
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element connecting i and j can be written as

[K] =
∫




[B]T[D][B] d


=
∫

l

k

l2

[
1 −1

−1 1

]
(NiAi + NjAj ) dx

= k

l

(
Ai + Aj

2

)[
1 −1

−1 1

]
(4.25)

where l is the distance between i and j . In the above equation, it has been assumed that
convection is ignored.

Thus, when the area varies linearly, we can substitute an average area value and use the
constant area formulation if there is no heat dissipation from the perimeter. This assumption
will not hold good if the body is circular in cross section, in which case the cross-sectional
area varies quadratically with the axial distance. This case can be dealt with by the use of
a quadratic variation within the element.

Example 4.2.1 A composite wall, with three layers of different material as shown in
Figure 4.2, has the following properties for the different layers:

Layer-1: Gypsum, k3 = 0.05 W/m ◦C, x3 = 1 cm and q = 15 W/m2

Layer-2: Fibre-glass, k2 = 0 .0332 W/m ◦C and x2 = 5 cm
Layer-3: Concrete, k1 = 1.2 W/m ◦C, x1 = 15 cm, h = 15 W/m2 ◦C and Ta = 25 ◦C
Calculate the temperatures T1 , T2 , T3 and T4 assuming unit area of heat flow.
On substituting the given parameter values into Equation 4.22, we obtain


5.0 −5.0 0.0 0.0

−5.0 5.66 −0.66 0.0
0.0 −0.66 5.66 8.66

−8.0 0.0 −8.0 8.15






T1

T2

T3

T4


 =




15
0.0
0.0
375


 (4.26)

The solution of the above simultaneous equations results in T1 = 53.6 ◦C, T2 =
50.60 ◦C, T3 = 27.875 ◦C and T4 = 26 ◦C

4.2.5 Plane wall with a heat source: solution by linear elements

Many examples of heat transfer problems involve internal heat generation, for example, in
nuclear reactors, electrical conductors, chemical and biological reactors, and so on. In this
section, the heat conduction through a wall is considered with internal heat generation as
shown in Figure 4.6. Let us assume that the one-dimensional approximation is valid and
that G W/m3 represents the quantity of heat generated per unit volume inside the wall.
Therefore, under steady state conditions, the applicable differential equation is

d2T

dx2
+ G

k
= 0 (4.27)
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Tw
Tw

x = −L x = 0 x = +L

To

Figure 4.6 Plane wall with heat source

The boundary conditions are

at x = ±L, T = Tw (4.28)

Integrating twice, we get

T = −G

k

x2

2
+ C1x + C2 (4.29)

From the symmetry of the problem, we find at x = 0, dT /dx = 0. Since T is a maximum
at the centre, then C1 = 0 and C2 = To. Therefore, Equation 4.29 becomes

T = −G

k

x2

2
+ To (4.30)

The temperature, Tw, at both ends can be obtained by substituting x = ±L, which
results in

Tw = −G

k

L2

2
+ To (4.31)

Similarly, at the centre, that is, x = 0,

To = Tw + GL2

2k
(4.32)

From Equations 4.30, 4.31 and 4.32, we can write

T − To

Tw − To
=
( x

L

)2
(4.33)

which shows that the temperature distribution is parabolic.
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In the case of a finite element formulation, we have to account for the heat generation
in the forcing vector such that

{f}e =
∫




G[N]T d
 =
∫

l

G

{
Ni

Nj

}
A dx = GAL

2

{
1
1

}
(4.34)

The heat generated is distributed equally between the two nodes ‘i’ and ‘j ’. In all
linear elements, we observe that the heat generated, or any other type of load, is equally
distributed among the participating nodes.

Because of the symmetry of the problem, it is sufficient in this case if we take only
one half of the domain.

Example 4.2.2 Determine the temperature distribution in a plane wall of thickness 60 mm,
which has an internal heat source of 0.3 MW /m3 and the thermal conductivity of the mate-
rial is 21 W/m ◦C. Assume that the surface temperature of the wall is 40 ◦C.

Because of symmetry, we may consider only one half of the plane wall as shown in
Figure 4.7. Let us consider four elements, each of length 7.5 mm. Let the cross-sectional
area for heat flow, A = 1 m2.

The element stiffness matrix is

[K]e = kA

L

[
1 −1

−1 1

]
=
[

2800 −2800
−2800 2800

]
(4.35)

which is identical for every element and

{f}e = GAL

2

{
1
1

}
=
{

1125
1125

}
(4.36)

which also is identical for all elements. Assembly gives


2800 −2800 0.0 0.0 0.0
−2800 5600 5600 0.0 0.0

0.0 −2800 5600 −2800 0.0
0.0 0.0 −2800 5600 −2800
0.0 0.0 0.0 −2800 2800







T1

T2

T3

T4

T5




=




1125
2250
2250
2250
1125




(4.37)

30 mm

x = 0
x

1 2 3 4

1 2 3 4 5

Figure 4.7 Finite element discretization
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Table 4.1 Summary of re-
sults–temperatures

T FEM ( ◦C) Exact ( ◦C)

T1 46.43 46.43
T2 46.03 46.03
T3 44.83 44.82
T4 42.82 42.81
T5 40.0 40.0

Applying the boundary condition, T5 = 40◦, the modifications are necessary to retain
the symmetry of the stiffness matrix, as discussed in Chapter 3.


2800 −2800 0.0 0.0 0.0

−2800 5600 5600 0.0 0.0
0.0 −2800 5600 −2800 0.0
0.0 0.0 −2800 5600 0.0
0.0 0.0 0.0 0.0 1







T1

T2

T3

T4

T5




=




1125
2250
2250

2250 + 2800(40)

40




(4.38)

Solving the above system of equations, we obtain the temperature distribution as shown
in Table 4.1.

We observe that the finite element method results are either very close or equal to the
exact solution. The method can be extended for the case of either a known wall heat flux,
or a convection boundary condition at the wall, as shown in Example 4.2.3.

Example 4.2.3 In Example 4.2.2, the left-hand face is insulated and the right-hand face is
subjected to a convection environment at 93 ◦C with a surface heat transfer coefficient of
570 W/m2 ◦C. Determine the temperature distribution within the wall.

Since there is no symmetry, we have to consider the entire domain. Let us subdivide the
domain into eight elements (Figure 4.8), each of 7.5 mm width. Then,

[K]1 = [K]2 = · · · [K]7 =
[

2800 −2800
−2800 2800

]
(4.39)

[K]8 =
[

2800 −2800
−2800 2800

]
+ 570

[
0 0
0 1

]
=
[

2800 −2800
−2800 3370

]
(4.40)

Ta = 93 °C
h = 570 W/m2 °C

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

7.5

Insulated

Figure 4.8 Finite element discretization for the example with convection
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Table 4.2 Summary of results–
temperatures

T FEM ( ◦C) Analytical ( ◦C)

T1 150.28 150.29
T2 149.88 149.89
T3 148.68 148.68
T4 146.67 146.67
T5 143.86 143.86
T6 140.24 140.24
T7 135.82 135.83
T8 130.60 130.60
T9 124.59 124.59

The elemental forcing vectors are the same as for Example 4.2.2, except for the last
element, which is

{f}8 =
{

1125
1125

}
+ hAT a

{
0
1

}
=
{

1125
54135

}
(4.41)

Assembly may be carried out as in Example 4.2.2. The solution of the assembled equation
results in the temperature distribution within the wall. The FEM solution is compared with
the analytical1 results, as shown in Table 4.2, and compare very favourably.

4.2.6 Plane wall with a heat source: solution by quadratic elements

We have seen from the previous section that the analytical solution to the problem of a plane
wall with a heat source gives a quadratic temperature distribution. Thus, it is appropriate
to solve such a problem using quadratic elements. Let us consider the problem shown
in Figure 4.6. We require three nodes for each element in order to represent a quadratic
variation as discussed in Section 3.2.2, that is,

T = NiTi + NjTj + NkTk (4.42)

with

Ni =
[

1 − 3x

l
+ 2x2

l2

]

1Analytical solution is obtained by solving

d2T

dx2
+ G

k
= 0

subjected to boundary conditions. The final exact relation is

T = G

2k
(L2 − x2) +

(
GL

h
+ Ta

)
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Nj = 4x

l
− 4x2

l2

Nk = 2x2

l2
− x

l
(4.43)

From Chapter 3, the stiffness matrix is defined as

[K] =
∫




[B]T[D][B] d


= Ak

6l


 14 −16 2

−16 32 −16
2 −16 14


 (4.44)

where

[B] =
[(

4x

l2
− 3

l

) (
4

l
− 8x

l2

) (
4x

l2
− 1

l

)]
(4.45)

The loading vector is

{f} =
∫




G[N]T d


=
∫

l

G




Li(2Li − 1)

4LiLj

Lj (2Lj − 1)


A dx

= GAl

6




1
4
1


 (4.46)

In the above equation, the shape functions Ni , Nj and Nk are expressed in terms of the
local coordinate system Li and Lj , the use of which will facilitate the integration process
by using ∫

l

Na
i Nb

j dl = a!b!

(a + b + 1)!
l (4.47)

Example 4.2.4 We shall now solve Example 4.2.2 using one quadratic element only as
shown in Figure 4.9.

As before, we consider only one half of the wall, where L is equal to 30 mm.
Substituting values into Equations 4.44 and 4.46, we obtain

[K]e =

 1633.33 −1866.66 233.33

−1866.66 3733.33 −1866.66
233.33 −1866.66 1633.33


 (4.48)

and

{f}e =



1500
6000
1500


 (4.49)
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30

x = 0
x

1 2

1 2 3

Figure 4.9 Quadratic finite element discretization

Incorporating the boundary condition, that is, T3 = 40 ◦C, results in the following set of
equations: 

 1633.33 −1866.66 0.0
−1866.66 3733.33 0.0

0.0 0.0 1.0






T1

T2

T3


 =




1500 − 233.33(40)

6000 + 1866.66(40)

40.0


 (4.50)

The solution to the above system gives T1 = 46.43 ◦C and T2 = 44.82 ◦C, which are
identical to the exact solution.

4.2.7 Plane wall with a heat source: solution by modified quadratic
equations (static condensation)

In many transient and nonlinear problems, it will be necessary to obtain the temperature
distribution several times. Hence, any possible reduction in the number of nodes, without
sacrificing accuracy, is important. For one- dimensional quadratic elements, it is possible to
transfer the central node contribution to the side nodes. Thus, there will be only two nodes
but the influence of the quadratic variation is inherently present. This process is referred
to as static condensation and the procedure will be demonstrated by considering a typical
quadratic element equation, namely,

K11 K12 K13

K21 K22 K23

K31 K32 K33






T1

T2

T3


 =




f1

f2

f3


 (4.51)

In order to eliminate the middle node, that is, node 2, we transfer its contribution to
nodes 1 and 3. This is accomplished by expressing the temperature at node 2 in terms of
the temperatures at nodes 1 and 3, that is,

T2 = f2

K22
−
[
K21T1

K22
+ K23T3

K22

]
(4.52)
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Now, on substituting the above relation into the first and third nodal equations, we have[
K11 − K21

K22
K12

]
T1 +

[
K13 − K23

K22
K12

]
T3 =

[
f1 − f2

K12

K22

]
(4.53)

for the first node, and[
K31 − K21

K22
K32

]
T1 +

[
K33 − K23

K22
K32

]
T3 =

[
f3 − f2

K32

K22

]
(4.54)

for the second node. Now the matrix form of the equation can be rewritten as

(

K11 − K21

K22
K12

) (
K13 − K23

K22
K12

)
(

K31 − K21

K22
K32

) (
K33 − K23

K22
K32

)


{
T1

T3

}
=




f1 − f2
K12

K22

f3 − f2
K32

K22


 (4.55)

Note that the number of equations have been reduced, which leads to a small decrease
in computational cost. However, extending this procedure to multi-dimensional problems
is difficult and therefore not widely used.

Example 4.2.5 Repeat Example 4.2.4 using the static condensation procedure.
Substituting all relevant values into Equation 4.55 and applying the boundary condition

(T3 = 40 ◦C) leads to the following:[
700.0 0.0

0.0 1

]{
T1

T3

}
=
{

4499.89 + 700(40)

40.0

}
(4.56)

The solution to the above equation results in T1 = 46.43 ◦C, which is identical to the
exact solution.

4.3 Radial Heat Flow in a Cylinder

Many problems in industry, such as heat exchangers, crude oil transport, and so on, involve
the flow of hot fluids in very long pipes that have uniform boundary conditions along the
circumference, both inside and outside as shown in Figure 4.10. In such problems, the
heat transfer mainly takes place along the radial direction apart from the end effects. The
governing differential equation for heat flow in cylindrical geometries is

1

r

d

dr

(
rk

dT

dr

)
= 0 (4.57)

The boundary conditions are as follows:

At r = ri, T = Tw

and at r = ro, −k
dT

dr
= h(To − Ta) (4.58)
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ri

ro

h, Ta

Tw

Figure 4.10 Radial heat conduction in an infinitely long cylinder

where Tw is the inside wall temperature, To is the outside wall temperature, k is the
thermal conductivity, h is the heat transfer coefficient at the outside surface and Ta is the
atmospheric temperature.

Integrating Equation 4.57, we obtain

kT = C1 ln r + C2 (4.59)

Subjecting the above equation to the boundary conditions of Equation 4.58 results in

C1 = −hro(To − Ta) and C2 = kT w − C1 ln ri (4.60)

Substituting the constants and rearranging Equation 4.59, we obtain the exact solution as

(T − Tw)

(To − Ta)
= hro

k
ln

ri

ro
(4.61)

With the use of the finite element method and assuming a linear variation of temperature,
the resulting stiffness matrix is given by

[K] =
∫




[B]T[D][B] d
 +
∫

As

h[N]T[N] dAs

=
∫ ro

ri


−1

l
1

l


 k

[
−1

l

1

l

]
2πr dr +

∫
As

h

[
Ni

Nj

] [
Ni Nj

]
dAs

= 2πk

l

(ri + rj )

2

[
1 −1

−1 1

]
+ 2πroh

[
0 0
0 1

]
(4.62)

per unit length of a cylinder. In the above equation, the variation of r is expressed as
r = Niri + Njrj . The surface area per unit length is As = 2πro. The loading vector is

{f} =
∫

As

hT a[N ]T dAs = hT a2πro

{
0
1

}
(4.63)
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Example 4.3.1 Calculate the outer wall surface temperature and the temperature distribu-
tion in a thick wall cylinder with the following data:

ri = 40 cm, ro = 60 cm, k = 10 W/m ◦C, ho = 10 W/m2 C, Ta = 30 ◦C.

Consider a one-element solution with an element length of l = 60 − 40 = 20 cm. The
element stiffness matrix and the loading vectors are given by

[K]e = 2πk

l

ri + rj

2

[
1 −1

−1 1

]
+ 2πroh

[
0 0
0 1

]

= π

[
50 −50

−50 62

]
(4.64)

and

{f}e = π

{
0

360

}
(4.65)

The complete system of equations can be written as

π

[
50 −50

−50 62

]{
Ti

Tj

}
= π

{
0

360

}
(4.66)

The solution to the above system, with Ti = 100 ◦C results in Tj = To = 86.45 ◦C, which
is greater than the analytical solution, that is, 86.30 ◦C. A more accurate solution may be
obtained if two elements, each 10 cm long, are employed. The assembled equation for the
two-element system is 

 90 − 90 0
−90 200 −110

0 −110 122






T1

T2

T3


 =




0
0

360


 (4.67)

The solution to the above equations with boundary condition T1 = 100 ◦C, gives T2 =
92.48 ◦C and T3 = To = 86.34 ◦C. The accuracy of the outer wall temperature has been
greatly improved by using two elements.

4.3.1 Cylinder with heat source

Consider a homogeneous cylinder as shown in Figure 4.10 with uniformly distributed heat
sources. If we assume a very long cylinder, the temperature in the cylinder will be a
function of the radius only. Thus,

k

(
d2T

dr2
+ 1

r

dT

dr

)
+ G = 0 (4.68)

The boundary conditions are

at r = ro, T = Tw and − k
dT

dr
= h(Tw − Ta) (4.69)
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and the heat generated will be equal to the heat lost at the surface, that is,

Gπr2
oL = −k2πroL

(
dT

dr

)
ro

(4.70)

Equation 4.68 can be rewritten as

1

r
k

d

dr

(
r

dT

dr

)
+ G = 0 (4.71)

The analytical solution for this problem is

T − Tw

Tc − Tw
= 1 −

(
r

ro

)2

(4.72)

where Tc is the temperature at r = 0 and is given by

Tc = Tw + Gr2
o

4k
(4.73)

Let us now consider a finite element solution employing linear elements. The stiffness
matrix is (Equation 4.62 without convection)

[K] = 2πk

l

(
ri + rj

2

)[
1 −1

−1 1

]
(4.74)

and the forcing vector is

{f} =
∫

r

G[N]T2πr dr (4.75)

per unit length.
In cylindrical coordinates, r may be expressed as

r = Niri + Njrj (4.76)

Substituting the above equation into Equation 4.75 and integrating between ri and rj ,
we obtain

{f} = 2πGl

6

{
2ri + rj
ri + 2rj

}
(4.77)

where l is the length of an element.

Example 4.3.2 Calculate the surface temperature in a circular solid cylinder of radius
25 mm with a volumetric heat generation of 35.3 MW/m3. The external surface of the cylinder
is exposed to a liquid at a temperature of 20 ◦C with a surface heat transfer coefficient of
4000 W/m2 ◦C. The thermal conductivity of the material is 21 W/m ◦C.

Let us divide half of the region into four elements as shown in Figure 4.11, each of width
6.25 cm.
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4 h = 4000 W/m2 °C
Ta = 20 °C

Centre of the cylinder

1 2 3 4 51 2 3

Figure 4.11 Radial heat conduction in an infinitely long cylinder. Finite element dis-
cretization

On substituting the given data into Equation 4.74, the stiffness matrix of the four elements
may be calculated as follows:

[K]1 = 2π

[
10.5 −10.5

−10.5 10.5

]
(4.78)

[K]2 = 2π

[
31.5 −31.5

−31.5 31.5

]
(4.79)

[K]3 = 2π

[
52.5 −52.5

−52.5 52.5

]
(4.80)

and

[K]4 = 2π

[
73.5 −73.5

−73.5 73.5

]
+ 2π

[
0 0
0 100

]
(4.81)

Similarly, the forcing vectors for all four elements can be calculated as

{f}1 = 2π

{
229.82
459.63

}
(4.82)

{f}2 = 2π

{
919.27

1149.09

}
(4.83)

{f}3 = 2π

{
1608.18
1838.54

}
(4.84)

and

{f}4 = 2π

{
2298.18
2528.00

}
+ 2π

{
0

2000.0

}
(4.85)

Assembly gives


10.5 −10.5 0.0 0.0 0.0
−10.5 42.0 −31.5 0.0 0.0

0.0 −31.5 84.0 −52.5 0.0
0.0 0.0 −52.5 126.0 −73.5
0.0 0.0 0.0 −73.5 173.5







T1

T2

T3

T4

T5




=




229.82
1378.9
2757.81
4136.72
4528.00




(4.86)

The solution obtained by solving the above system of equations is tabulated in Table 4.3
We can see that the surface temperature, T5, is predicted very well but the deviation from

the exact solution increases as we proceed towards the centre. If two linear elements replace
the one element near the centre, then the solution for the maximum temperature is improved
to 398.43 ◦C. It is also possible to improve the accuracy of the temperature solution by using
quadratic elements.
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Table 4.3 Summary of re-
sults–temperatures

T FEM ( ◦C) Exact ( ◦C)

T1 402.19 392.26
T2 380.28 376.54
T3 329.20 327.29
T4 246.02 245.22
T5 130.32 130.31

4.4 Conduction–Convection Systems

Many physical situations involve the transfer of heat in a material by conduction and its
subsequent dissipation by exchange with a fluid or the environment by convection. The
heat sinks used in the electronic industry to dissipate heat from electronic components to
the ambient are an example of a conduction–convection system. Other examples include
the dissipation of heat in electrical windings to the coolant, the heat exchange process in
heat exchangers and the cooling of gas turbine blades in which the temperature of the
hot gases is greater than the melting point of the blade material. In Section 3.6, we have
already demonstrated the applications of the finite element method for extended surfaces
with different cross sections. Also, the problems discussed in the previous section of this
chapter include the influence of convective boundary conditions. However, all the problems
studied previously in this chapter assumed that the domains were of infinite length.

Figure 4.12 shows various types of fins used in practice. Let us now consider the case
of a tapered fin (extended surfaces) with plane surfaces on the top and bottom. The fin
also loses heat to the ambient via the tip. The thickness of the fin varies linearly from t2 at
the base to t1 at the tip as shown in Figure 4.13. The width, b, of the fin remains constant
along the whole length.

Figure 4.12 Different types of fins
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L

bt2

t1

Figure 4.13 Tapered fin

i

x

y
j

L

bti

tj

Figure 4.14 Tapered fin. Locations i and j

Let us consider a typical element e, with thicknesses ti and tj , areas Ai and Aj and
perimeter Pi and Pj at locations ‘i’ and ‘j ’ respectively as shown in Figure 4.14.

Ai = bt i; Aj = btj ; Pi = 2(b + ti ) and Pj = 2(b + tj ) (4.87)

Since ‘A’ varies linearly with ‘x’, we can write

A = Ai − Ai − Aj

L
x (4.88)

where L is the length of an element. Alternatively, we can write

A = Ai

(
1 − x

L

)
+ Aj

x

L

= NiAi + NjAj (4.89)

Similarly, P = NiPi + NjPj . The stiffness matrix is written as

[K] =
∫





−1

l
1

l


 [k]

[
−1

l

1

l

]
A dx +

∫



h

[
Ni

Nj

] [
Ni Nj

]
P dx (4.90)

After integration and rearrangement, we have

[K] = k

l

(
Ai + Aj

2

)[
1 −1

−1 1

]
+ hl

12

[
3Pi + Pj Pi + Pj

Pi + Pj Pi + 3Pj

]
(4.91)
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The forcing vector for this problem is

{f} =
∫

l

G[N]TA dx −
∫

As

q[N]T dAs +
∫

As

hT a[N]T dAs (4.92)

where G is the heat source per unit volume, q is the heat flux, h is the heat transfer
coefficient and Ta is the atmospheric temperature. Integrating, we obtain

{f} = Gl

6

{
2Ai + Aj

Ai + 2Aj

}
− ql

6

{
2Pi + Pj

Pi + 2Pj

}
+ hT al

6

{
2Pi + Pj

Pi + 2Pj

}
+ hT aA

{
0
1

}
(4.93)

The last contribution is valid only for the element at the end face with area A. For all
other elements, this last convective term is zero.

Example 4.4.1 Let us consider an example with the fin tapering linearly from a thickness
of 2 mm at the base to 1 mm at the tip (see Figure 4.14). Also, the tip loses heat to the
ambient with convection, with a heat transfer coefficient, h, = 120 W/m2 ◦C and atmospheric
temperature, Ta , = 25 ◦C. Determine the temperature distribution if the base temperature
is maintained at 100 ◦C. The total length of the fin, L, is 20 mm and the width, b is 3 mm.
Assume the thermal conductivity of the material is equal to 200 W/m ◦C.

Let us divide the region into two elements of equal length, 10 mm each, as shown in
Figure 4.15. Substituting the relevant data into Equation 4.91, we obtain the stiffness matri-
ces for both elements as follows:

[K]1 =
[

0.109 −0.103
−0.103 0.108

]
(4.94)

and

[K]2 =
[

0.079 −0.073
−0.073 0.079

]
(4.95)

Similarly, the forcing vectors are calculated as

{f}1 =
{

0.148
0.145

}
(4.96)

and

{f}2 =
{

0.130
0.137

}
(4.97)

2

10 mm10 mm

T1 T2 T31

Figure 4.15 Tapered fin. Finite element discretization
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Assembly of the above equations results in
 0.109 −0.103 0.0

−0.103 0.187 −0.073
0.0 −0.079 0.079






T1

T2

T3


 =




0.148
0.145 + 0.13

0.137


 (4.98)

On applying the relevant boundary conditions and solving the above system, we obtain
T1 = 100 ◦C, T2 = 85.39 ◦C and T3 = 83.52 ◦C.

The heat dissipation can be calculated from the following relationship:

Q = �2
e=1hP eLe

(
Ti + Tj

2
− Ta

)
(4.99)

Substituting the contribution from both elements results in a value of Q = 1.38 W.

4.5 Summary

In this chapter, examples of one-dimensional problems have been discussed in detail. In
most cases, analytical solutions were available as benchmarks for the finite element solu-
tions. There are many other application problems, which can be studied in one dimension.
However, the essential fundamentals of the finite element method for one-dimensional heat
conduction problems have been given, which may easily be extended to other forms of
one-dimensional heat conduction problems.

4.6 Exercise

Exercise 4.6.1 A composite wall with three different layers, as shown in Figure 4.2 gen-
erates 0.25 G W/m3 of heat. Using the relevant data given in Example 4.2.1, determine
the temperature distribution across the wall using both linear and quadratic variations and
compare the results.

Exercise 4.6.2 An insulation system around a cylindrical pipe consists of two different lay-
ers. The first layer immediately on the outer surface of the pipe is made of glass wool and the
second one is constructed using plaster of Paris. The cylinder diameter is 10 cm and each
insulating layer is 1 cm thick. The thermal conductivity of the glass wool is 0.04 W/m ◦C and
that of the plaster is 0.06 W/m ◦C. The cylinder carries hot oil at a temperature of 92 ◦C,
and the atmospheric temperature outside is 15 ◦C. If the heat transfer coefficient from the
outer surface of the insulation to the atmosphere is 15 W/m2 ◦C, calculate the temperature
at the interface between the two insulating materials and on the outer surface.

Exercise 4.6.3 A solid cylinder of 10 cm diameter generates 0.3 G W/m3 of heat due to
nuclear reaction. If the outside temperature is 40 ◦C and the heat transfer coefficient from the
solid surface to the surrounding fluid is 30 W/m2 ◦C, calculate the temperature distribution
using quadratic elements. Assume a thermal conductivity of 15 W/m ◦C.
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Exercise 4.6.4 A circular fin of inner diameter 20 cm and outer diameter of 26 cm transfers
heat from a small motorcycle engine. If the average engine surface temperature is 112 ◦C,
determine the temperature distribution along the fin surface. The thermal conductivity of the
fin material is 21 W/m ◦C and the convective heat transfer coefficient between the fin and
the atmosphere is 120 W/m2 ◦C. Assume an atmospheric temperature of 32 ◦C.

Exercise 4.6.5 Consider a composite wall consisting of four different materials as shown
in Figure 4.16. Assuming a one-dimensional heat flow, determine the heat flow through the
composite slab and the interfacial temperatures. kA = 200 W/m ◦C, kB = 20 W/m ◦C and
kC = 40 W/m ◦C and kD = 60 W/m ◦C. Assume that the areas of the surfaces B and C are
equal to 0.1 m2.

Exercise 4.6.6 Consider a composite wall, which has one linearly varying cross-sectional
area as shown in Figure 4.17. Determine the heat flow and interfacial temperatures.
Thickness = 10 cm, kA = 200 W/m ◦C, kB = 20 W/m ◦C and kC = 40 W/m ◦C.

Exercise 4.6.7 A plane wall (k = 20 W/m ◦C) of thickness 40 cm has its outer surfaces
maintained at 30 ◦C. If there is uniform internal heat generation of 0.2 MW/m3 in the plane
wall, determine the temperature distribution in the plane wall. Solve this problem using
(a) four linear elements (b) one quadratic element and (c) one modified quadratic element
with only two nodes. Compare the results with analytical solutions.

Exercise 4.6.8 A plane wall (k = 10 W/m ◦C) of thickness 50 cm has its exterior surface
subjected to a convection environment of 30 ◦C with a surface heat transfer coefficient of
600 W/m2 ◦C. Determine the temperature distribution in the plane wall using (a) four lin-
ear elements (b) one quadratic element and (c) one modified quadratic element with only
two nodes. Compare the results with the analytical solution. If the heat transfer coefficient
increases to 10,000 W/m2 ◦C, what happens to the temperature of the exterior surface?

Area = 0.2 m2

220 °C

Q

2 cm 
5 cm 

3 cm

20 °C

A
B

C
D

Figure 4.16 A composite wall
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10 cm5 cm

1 cm 1 cm

5 cm

A

C

B

120 °C

20 °C

Figure 4.17 A composite wall

Exercise 4.6.9 Calculate the outer wall surface temperature and the temperature distribu-
tion in a thick-walled hollow cylinder when the inner wall temperature is 120 ◦C and the
outer wall is exposed to a convection environment of 25 ◦C with a surface heat transfer coef-
ficient of 20 W/m2 ◦C. The inner and outer radii of the hollow cylinder are 30 cm and 60 cm
respectively. The thermal conductivity of the material of the hollow cylinder is 20 W/m ◦C.
Use one linear element and two linear elements for the solution. Compare the results with
the analytical solution.

Exercise 4.6.10 Calculate the surface temperature in a circular solid cylinder (k =
20 W/m2 ◦C) of radius 30 mm with a volumetric heat generation of 25 MW/m3. The exter-
nal surface of the cylinder is exposed to a liquid at 25 ◦C with a heat transfer coefficient of
5000 W/m2 ◦C. Use (a) four linear elements and (b) two quadratic elements. Compare the
solution with the analytical solution.

Exercise 4.6.11 Consider a tapered fin of length 5 cm dissipating heat to an ambient at
30 ◦C. The heat transfer coefficient on the surface and the tip is 100 W/m2 ◦C. The fin tapers
from a thickness of 5 mm to a thickness of 2 mm at the tip. The thermal conductivity of the
material of the fin is 100 W/m ◦C. The width of the fin is constant along the length and equal
to 2 mm. Determine the heat dissipation from the fin for a base temperature of 100 ◦C. Use
(a) two linear elements and (b) one quadratic element. Also, calculate the fin efficiency.
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5

Steady State Heat Conduction
in Multi-dimensions

5.1 Introduction

As seen in the previous chapters, a one-dimensional approximation is easy to implement and
is also economical. However, the majority of heat transfer problems are multi-dimensional
in nature (Bejan 1993; Holman 1989; Incropera and Dewitt 1990; Ozisik 1968). For such
problems, the accuracy of the solution can be improved using either a two- or a three-
dimensional approximation. For instance, conduction heat transfer in an infinitely long
hollow rectangular tube, which is exposed to different boundary conditions inside and out-
side the tube (Figure 5.1(a)), and heat conduction in a thin plate, which has negligible
heat transfer in the direction of the thickness may be approximated as two-dimensional
problems.

In certain situations, it is often difficult to simplify the problem to two dimensions
without sacrificing accuracy. Most complex industrial heat transfer problems are three-
dimensional in nature because of the complicated geometries involved. Heat transfer in
aircraft structures and heat shields used in space vehicles are examples of such problems. It
is, however, important to note that even geometries that are simple but which have complex
boundary conditions become three-dimensional in nature. For example, the same hollow,
rectangular tube mentioned previously, but in this case having non-uniform conditions
along the length, is a three-dimensional problem. Also, if the hollow rectangular tube is
finite, again it may be necessary to treat it as a three-dimensional problem (Figure 5.1).
One typical and simple example of three-dimensional heat conduction is that of a solid
cube subjected to different boundary conditions on all six faces as shown in Figure 5.1(b).

Another approximation, commonly employed in heat conduction studies, is the axisym-
metric formulation. This type of problem is often considered as a two-and-a-half-dimensional
case as it has the features of both a two- and a three-dimensional approximation. If a geom-
etry is generated by revolving a surface through 360◦ with reference to its axis then it

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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T1
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T2
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Cross section

(a) Two dimensional plane
geometry

T4

T5

T6

T3
T2

T1

(b) Three dimensional
domain

T1

T2

(c) Axisymmetric
configuration

Figure 5.1 Examples of heat conduction in two-dimensional, three-dimensional and
axisymmetric geometries

is referred to as being axisymmetric. For instance, the revolution of a rectangular sur-
face through 360◦, with respect to a vertical axis, produces a vertical cylinder as shown
in Figure 5.1(c). Therefore, the heat conduction equations need to be written in three-
dimensional cylindrical coordinates for such a system. However, if no significant variation
in temperature is expected in the circumferential direction (θ direction), which is often the
case, the problem can be reduced to two dimensions, and a solution based on the shaded
rectangular plane in Figure 5.1(c) is sufficient.

Unlike one-dimensional problems, two- and three-dimensional situations are usually
geometrically complex and expensive to solve. The complexity of the problem is increased
in multi-dimensions by the occurrence of irregular geometry shapes and the appropriate
implementation of boundary conditions on their boundaries. In the case of complicated
geometries, it is often necessary to use unstructured meshes (unstructured meshes are gen-
erated employing arbitrarily generated points in a domain, see Chapter 10) to divide the
domain into finite elements. Fortunately, owing to present-day computing capabilities, even
complex three-dimensional problems can be solved on a standard personal computer (PC).
In the following sections, we demonstrate the solution of multi-dimensional steady state
problems with relevant examples.

5.2 Two-dimensional Plane Problems

5.2.1 Triangular elements

The simplest finite element discretization that can be employed in two dimensions is by
using linear triangular elements. In Chapter 3, we discussed the use of triangular elements
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Insulated

InsulatedInsulated

Exposed to boundary
conditions

Γq

Γh

ΓT

i j

k

Figure 5.2 Typical two-dimensional plane geometry and triangular element

in detail. These principles are employed here to solve two-dimensional conduction heat
transfer problems.

In order to demonstrate the use of linear triangular elements, let us consider a general
problem as shown in Figure 5.2. As illustrated in the figure, the geometry is irregular
and both the flat faces of the plate are insulated. The surface in the thickness direction is
exposed to various boundary conditions. This is an ideal two-dimensional heat conduction
problem with no temperature variation allowed in the thickness direction. The final matrix
form of the finite element equations, as given in Chapter 3, is

[K]{T} = {f} (5.1)

where
[K] =

∫



[B]T[D][B] d
 +
∫

	

h[N]T[N] d	 (5.2)

and
{f} =

∫



G[N]T d
 −
∫

	

q[N]T d	 +
∫

	

hT ∞[N]T d	 (5.3)

For a linear triangular element, the temperature distribution can be written as

T = NiTi + NjTj + NkTk (5.4)

The gradient matrix is given as

{g} =




∂T

∂x

∂T

∂y


 =




∂Ni

∂x

∂Nj

∂x

∂Nk

∂x

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y






Ti

Tj

Tk


 = [B]{T} (5.5)

where

[B] =




∂Ni

∂x

∂Nj

∂x

∂Nk

∂x

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y


 = 1

2A

[
bi bj bk

ci cj ck

]
(5.6)
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Note that G in Equation 5.3 is a uniform heat source. Assuming an anisotropic material,
we have

[D] =
[
kx 0
0 ky

]
(5.7)

Note that the off-diagonal terms are neglected from the above equation for the sake of
simplicity. Substituting [D] and [B] into Equation 5.2, we get, for a boundary element as
shown in Figure 5.3

[K]e = t

4A


kx


 b2

i bibj bibk

bibj b2
j bj bk

bibk bj bk b2
k


+ ky


 c2

i cicj cick

cicj c2
j cj ck

cick cj ck c2
k




+ htl jk

6


0 0 0

0 2 1
0 1 2


 (5.8)

The subscript e in the above equation denotes a single element. It should be noted that
in the above equation, d
 is equal to tdA and d	 is equal to tdl, where t is the thickness
of the plate and l is the length of an element side on the domain boundary. In a similar
fashion, the forcing vector can be written as

{f}e = GAt

3




1
1
1


− qtl ij

2




1
1
0


+ hT atl jk

2




0
1
1


 (5.9)

The integration formulae used for the above equations are simple, as indicated in
Chapter 3. For convenience, we have listed the integration formulae in Appendix B.

As seen in the previous equations, the effect of uniform heat generation contributes to
all three nodes of an element, irrespective of its position. However, the convection and flux
boundary conditions are applicable only on the boundaries of the domain.

If we need to have a ‘point source’ G∗ instead of a ‘uniform source’ G, the first term
in Equation 5.9 is replaced with

{f} = G∗t




Ni

Nj

Nk




(xo,yo)

(5.10)

G

q

h, Ta

k

i
j

Figure 5.3 Typical two-dimensional triangular element with heat generation and heat flux
and convection boundaries



130 STEADY STATE HEAT CONDUCTION IN MULTI-DIMENSIONS

where xo and yo are the coordinates of the point source. In the above equations, all the
shape function values must be evaluated at (xo, yo) (note that although G∗ is a point source,
in two dimensions, it is a line source in the thickness direction and expressed in units of
W/m). The contribution from the point source is then appropriately distributed to the three
nodes of the element that contains the point source.

In order to demonstrate the characteristics of two-dimensional steady state heat transfer,
the temperature distribution in a flat plate having constant temperature boundary conditions
is considered in the following example.

Example 5.2.1 A square plate of unit thickness, size 100 cm, as shown in Figure 5.4, is
subjected to isothermal boundary conditions of 100 ◦C on all sides except the top side, which
is subjected to 500 ◦C. If the thermal conductivity of the material is constant and equal to
10 W/m ◦C, determine the temperature distribution using linear triangular finite elements.

The square domain is first divided into eight equal-sized linear triangular elements, as
shown in Figure 5.5. Two sets of elemental [K] matrices exist because of the orientation of
the triangles. For elements 1, 3, 5, and 7, we have the following elements of the [K] matrix:

b1 = y2 − y4 = −0.50; c1 = x4 − x2 = −0.50

b2 = y4 − y1 = 0.50; c2 = x1 − x4 = 0.00

b4 = y1 − y2 = 0.00; c4 = x2 − x1 = 0.50 (5.11)

1 m100°C

500°C

100°C

100°C

1 m

Figure 5.4 Square plate with different temperature boundary conditions

1

54

7 8 9

3

6

2

1

2

3

4

5

6

7

8

Figure 5.5 Discretization using triangular elements
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The elemental [K] matrices for elements 1, 3, 5 and 7 can be written as (refer to
Equation 5.8)

[K]1 = [K]3 = [K]5 = [K]7 = tk

4A


 b2

1 + c2
1 b1b2 + c1c2 b1b4 + c1c4

b1b2 + c1c2 b2
2 + c2

2 b2b4 + c2c4

b1b4 + c1c4 b2b4 + c2c4 b2
4 + c2

4


 (5.12)

where the area of the elements can be written as

2A = det

∣∣∣∣∣∣
1.0 0.0 0.0
1.0 0.5 0.0
1.0 0.0 0.5

∣∣∣∣∣∣ = 0.25 m2 (5.13)

Substituting the area into Equation 5.12, we get the final form of the elemental
equation as

[K]1 = [K]3 = [K]5 = [K]7 = tk

2


 2.0 −1.0 −1.0

−1.0 1.0 0.0
−1.0 0.0 1.0


 (5.14)

Similarly, we can calculate the elemental [K] matrices for elements 2, 4, 6 and 8 as

[K]2 = [K]4 = [K]6 = [K]8 = tk

2


 1.0 −1.0 0.0

−1.0 2.0 −1.0
0.0 −1.0 1.0


 (5.15)

The assembled equations are (see Appendix C)

tk

2




2.0 −1.0 0.0 −1.0 0.0 0.0 0.0 0.0 0.0
−1.0 4.0 −1.0 0.0 −2.0 0.0 0.0 0.0 0.0
0.0 −1.0 2.0 0.0 0.0 −1.0 0.0 0.0 0.0

−1.0 0.0 0.0 4.0 −2.0 0.0 −1.0 0.0 0.0
0.0 −2.0 0.0 −2.0 8.0 −2.0 0.0 −2.0 0.0
0.0 0.0 −1.0 0.0 −2.0 4.0 0.0 0.0 −1.0
0.0 0.0 0.0 −1.0 0.0 0.0 2.0 −1.0 0.0
0.0 0.0 0.0 0.0 −2.0 0.0 −1.0 4.0 −1.0
0.0 0.0 0.0 0.0 0.0 −1.0 0.0 −1.0 2.0







T1

T2

T3

T4

T5

T6

T7

T8

T9




=




0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0




(5.16)

The only unknown quantity in the above equation is T5, which can be calculated from
the equation corresponding to the fifth node, that is, from

8T5 = 2T2 + 2T4 + 2T6 + 2T8 (5.17)

Substituting T2 = T4 = T6 = 100 ◦C and T8 = 500 ◦C, we get T5 = 200 ◦C
The analytical solution to this problem is given by (Holman 1989)

T (x, y) = (Ttop − Tside)
2

π

∞∑
n=1

(−1)n+1 + 1

n
sin
(nπx

w

) sinh
(nπy

w

)
sinh

(
nπH

w

) + Tside (5.18)
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where w is the width, H is the height of the plate, Ttop is the temperature at the top side
and Tside is the temperature at the other sides of the plate. Therefore,

T (0.5, 0.5) = 200.11 ◦C (5.19)

As seen, the finite element solution is in close agreement with the analytical solution. It
is interesting to note that the finite difference solution is given by

T5 = T2 + T4 + T6 + T8

4
= 200 ◦C (5.20)

which is identical to the finite element solution. Figure 5.6 shows an unstructured mesh and
a computer-generated solution for this problem. As shown, the temperature at the centre
is close to that obtained from the coarse mesh of Figure 5.5, and also to the analytical
solution. However, the unstructured mesh solution is not as accurate as that of the regular
mesh solution. This indicates that the accuracy of a regular structured mesh is superior to
that of unstructured meshes. If a finer structured mesh as shown in Figure 5.7 is used, the
temperature at the centre is 200 ◦C.

Using the nodal temperature values, the temperature at any other location within an
element can be determined using linear interpolation. The calculation of the temperature at
any arbitrary location has been demonstrated in Chapter 3. The following two-dimensional
example is given in order to further illustrate this point.

Example 5.2.2 Calculate the temperature at point 4 (40, 40) shown in Figure 5.8. The
temperature values at nodes 1, 2 and 3 are 100 ◦C, 200 ◦C and 100 ◦C respectively. The

(a) Finite element mesh (b) Temperature contours.
Temperature varies between
100 and 500°C.  Interval
between two contours is 25°C

Figure 5.6 Solution for Example 5.2.1 on an unstructured mesh. The temperature obtained
at the centre of the plate is 200.42 ◦C
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Figure 5.7 Fine structured mesh

1 (50, 0)

2(50, 50)3(0, 50)

4(40, 40)

Figure 5.8 Interpolation into a triangular element

coordinates of these points are (50, 0), (50, 50) and (0, 50), respectively. All dimensions
are in cm. Also, calculate the heat flux in both the x and y directions. Assume a thermal
conductivity value of 10 W/m ◦C.

The following expression can be used to describe the linear variation of temperature
within the element

T = N1T1 + N2T2 + N3T3 (5.21)

In order to calculate the temperature at node 4, the shape functions N1, N2 and N3 have
to be calculated at node 4.
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Therefore, for the first node

N1 = 1

2A
(a1 + b1x4 + c1y4) (5.22)

where
a1 = x2y3 − x3y2 = 2500.00

b1 = y2 − y3 = 0.0

c1 = x3 − x2 = −50.00 (5.23)

At point 4, (x = 40, y = 40), from Equation 5.22, we get (2A = 2500)

N1 = 1

5
(5.24)

Similarly, it can be verified that N2 = 1/5 and N3 = 3/5. Note that N1 + N2 + N3 = 1.
The substitution of these shape function values into Equation 5.21 results in a value of
T4 = 160 ◦C.

The heat flux in the x and y directions are calculated as

qx = −k
∂T

∂x
= − 10

2500
(b1T1 + b2T2 + b3T3) = −20 W/cm2 (5.25)

Similarly, it can be shown that qy = −20 W/cm2. It should be noted that the flux is
constant over a linear triangular element.

From Examples 5.2.1 and 5.2.2, the demonstration of problems involving constant tem-
perature boundary conditions is clear. It is therefore essential to move on to an example
with more complicated boundary conditions. Thus, in the following example, a conduction
problem is considered, which has mixed boundary conditions.

Example 5.2.3 Determine the temperature distribution in a square plate of unit thickness
size 5 cm as shown in Figure 5.9. The upper triangular half has an internal heat generation
of 1.2 W/cm3, while the lower half has a point source of 5 W/cm in the thickness direction
(point source on a two-dimensional plane) at the point (1, 1) cm. In addition to the above
heat sources, the bottom side of the plate is insulated, the right vertical side is subjected to
a temperature of 100 ◦C, the top side is subjected to a convective heat transfer boundary
condition with a heat transfer coefficient of h = 1.2 W/cm2K and Ta = 30 ◦C and the left
vertical side is subjected to a uniform heat flux of 2 W/cm2. Assume a thermal conductivity
of 2 W/cm ◦C.

To make the solution procedure simple, the plate is divided into two triangular elements
as shown in Figure 5.10. The elemental equations of both elements can be set up separately
using the formulation discussed (Equations 5.8 and 5.9). For the first element, a1 = 25.0,
b1 = −5.0, c1 = −5.0, a2 = 0.0, b2 = 5.0, c2 = 0.0, a3 = 0.0, b3 = 0.0, c3 = 5.0.

The stiffness matrix for element 1 is

[K]1 = t

4A


kx


 b2

1 b1b2 b1b3

b1b2 b2
2 b2b3

b1b3 b2b3 b2
3


+ ky


 c2

1 c1c2 c1c3

c1c2 c2
2 c2c3

c1c3 c2c3 c2
3




 (5.26)
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100°C 5 cm

5 cm

h = 1.2 w/cm2 K, T = 30°C

q = 2 w/cm2

G* = 5 w/cm

G = 1.2 w/cm3

(1,1)

Figure 5.9 A square domain with mixed boundary conditions

1 2

3 4

1

2

Figure 5.10 Discretization using two triangular elements

Substituting the values for a, b and c, we obtain

[K]1 =

 2.0 −1.0 −1.0

−1.0 1.0 0.0
−1.0 0.0 1.0


 (5.27)

The loading term for element 1 is given by

{f}1 = −ql31

2




1.0
0.0
1.0


+ G∗t




N1

N2

N3




(1,1)

=



−2.0
1.0

−4.0


 (5.28)

Note that the shape functions evaluated at point (1, 1) are N1 = 3/5, N2 = 1/5 and
N3 = 1/5.

In a similar way, the stiffness matrix and loading terms for the second element can be
calculated. They are

[K]2 =

 1.0 −1.0 0.0

−1.0 4.0 0.0
0.0 0.0 3.0


 (5.29)
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and

{f}2 =



5.0
95.0
95.0


 (5.30)

On assembling the above contributions for the two elements, we obtain the following
system of simultaneous equations, (see Appendix C) that is,


2.0 −1.0 −1.0 0.0

−1.0 2.0 0.0 −1.0
−1.0 0.0 4.0 0.0

0.0 −1.0 0.0 4.0






T1

T2

T3

T4


 =




−2.0
6.0

91.0
95.0


 (5.31)

In the above set of equations, the temperature values T2 and T4 are known and are equal
to 100 ◦C.

The boundary conditions can be implemented as previously explained in Chapters 2
and 3.

Applying the boundary conditions, we get


2.0 −1.0 −1.0 0.0
0.0 1.0 0.0 0.0

−1.0 0.0 4.0 0.0
0.0 0.0 0.0 1.0






T1

T2

T3

T4


 =




−2.0
100.0
91.0

100.0


 (5.32)

Therefore, the simultaneous equations to be solved are 2T1 − T3 = 98 and −T1 + 4T3 =
91. The solution to these equations results in T1 = 69 ◦C and T3 = 40 ◦C.

If, in the above example, there is a uniform heat generation of 1.2 W/cm3 throughout
the domain, then the loading term for the first element changes to (in the absence of line
source)

{f}1 = −ql31

2




1
0
1


+ GAt

3




1
1
1


 =




0
5
0


 (5.33)

The resulting simultaneous equations become 2T1 − T3 = 100 and −T1 + 4T3 = 95 and
the solution becomes T1 = 70.71 ◦C and T3 = 40.42 ◦C.

5.3 Rectangular Elements

A typical rectangular element is shown in Figure 5.11 with mixed boundary conditions.
The temperature distribution in a rectangular element is written as

T = NiTi + NjTj + NkTk + NlTl (5.34)
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2a

2b

h, Ta

T1
kl

ji

q

Figure 5.11 Rectangular element with different boundary conditions

From Equation 3.89, Chapter 3 (with origin at k), the shape functions for a rectangular
element are given as

Ni =
(

1 − x

2b

) (
1 − y

2a

)
Nj = x

2b

(
1 − y

2a

)
Nk = xy

4ab

Nl = y

2a

(
1 − x

2b

)
(5.35)

The gradient matrix of the shape functions is

[B] =




∂Ni

∂x

∂Nj

∂x

∂Nk

∂x

∂Nl

∂x

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y

∂Nl

∂y


 = 1

4ab

[−(2a − y) (2a − y) y −y

−(2b − x) −x x (2b − x)

]
(5.36)

The stiffness matrix is given by

[K] =
∫




[B]T[D][B] dV +
∫

	

h[N]T[N] d	 (5.37)

where

[D] =
[
kx 0
0 ky

]
(5.38)

Substituting, the [B] and [D] matrices into the above equation, results in a 4 × 4 matrix.
We leave the algebra to the readers to work out. A typical term in the matrix is∫ 2b

0

∫ 2a

0

kx

16a2b2
(2a − y)2 dx dy +

∫ 2b

0

∫ 2a

0

ky

16a2b2
(2b − x)2 dx dy

+
∫ 2b

0

∫ 2a

0

xy

4ab
dx dy (5.39)
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After integration, the matrix [K] becomes

[K] = kxa

6b




2.0 −2.0 −1.0 1.0
−2.0 2.0 1.0 −1.0
−1.0 1.0 2.0 −2.0

1.0 −1.0 −2.0 2.0


+ kyb

6a




2.0 −2.0 −1.0 1.0
−2.0 2.0 1.0 −1.0
−1.0 1.0 2.0 −2.0

1.0 −1.0 −2.0 2.0




+ hl

12




0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 4.0 2.0
0.0 0.0 2.0 4.0


 (5.40)

The loading vector can be written as

{f} =
∫

G[N]T dA =
∫ 2b

0

∫ 2a

0
G




Ni

Nj

Nk

Nl


 dx dy = GAt

4




1
1
1
1


 (5.41)

The heat flux and convective heat transfer boundary integrals are evaluated as for
triangular elements. In order to demonstrate the application of such elements, Example
5.2.3 will now be reconsidered using a rectangular element.

Example 5.3.1 Determine the temperature distribution in the square plate of Example 5.2.3,
using a single rectangular element.

Substituting the relevant data into Equation 5.40, we get (see Figure 5.12)

[K] = 5

15




2.0 −2.0 −1.0 1.0
−2.0 2.0 1.0 −1.0
−1.0 1.0 2.0 −2.0

1.0 −1.0 −2.0 2.0


+ 5

15




2.0 1.0 −1.0 −2.0
1.0 2.0 −2.0 −1.0

−1.0 −2.0 2.0 1.0
−2.0 −1.0 1.0 2.0




+




0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 2.0 1.0
0.0 0.0 1.0 2.0


 (5.42)

Simplifying, this becomes

[K] = 1

6




8.0 −2.0 −4.0 −2.0
−2.0 8.0 −2.0 −4.0
−4.0 −2.0 20.0 4.0
−2.0 −4.0 4.0 20.0


 (5.43)

The forcing vector is

{f} = 6t

4




1
1
1
1


+ G∗t




N1

N2

N3

N4


− qtl14

2




1
0
0
1


+ hT atl31

2




0
0
1
1


 (5.44)
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i j

kl

5 cm

5 cm

100°C

h = 1.2 w/cm2 °C, Ta = 30°C

q = 2 w/cm2

Figure 5.12 Heat conduction in a square plate. Approximated using a rectangular (square)
element

again, on simplifying we obtain

{f} =




5.7
8.3

97.7
93.3


 (5.45)

Therefore, the final form of the set of simultaneous equations can be written as

1

6




8.0 −2.0 −4.0 −2.0
−2.0 8.0 −2.0 −4.0
−4.0 −2.0 20.0 4.0
−2.0 −4.0 4.0 20.0






T1

T2

T3

T4


 =




5.7
8.3

97.7
93.3


 (5.46)

The temperatures at points 2 and 3 are known. Substitution into the above system results
in the following simultaneous equations,

8T1 − 2T4 = 634.2

−2T1 + 20T4 = 559.8 (5.47)

The solution of the above simultaneous equation gives T4 = 36.85 ◦C and T1 = 88.48 ◦C.

5.4 Plate with Variable Thickness

The conduction heat transfer in a plate with variable thickness is essentially a three-
dimensional problem. However, if the thickness variation is small, it is possible to express
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j

k

i

j

h, Ta

q

ti

t

tk

Figure 5.13 A triangular plate with linearly varying thickness

the thickness as a linear variation in the discretized triangular element as shown in
Figure 5.13. If the thickness variation is assumed to be linear, we can write

t = Niti + Nj tj + NkTk (5.48)

Therefore, the stiffness matrix can be rewritten as

[K] =
∫




[B]T[D][B] d
 +
∫

S

h[N]T[N] dS

=
∫

A

[B]T[D][B](Niti + Nj tj + Nktk) dA

+
∫

l

h[N]T[N](Niti + Nj tj + Nktk) dlik (5.49)

On substitution of the various matrices and integrating (see Appendix B), we finally
obtain

[K] =
(

ti + tj + tk

12A

)
kx


 b2

i bibj bibk

bibj b2
j bj bk

bibk bjbk b2
k


+ ky


 c2

i cicj cick

cicj c2
j cj ck

cick cj ck c2
k






+ hl ij

12


3ti + tj ti + tj 0.0

ti + tj ti + 3tj 0.0
0.0 0.0 0.0


 (5.50)

The load term is calculated as

{f} =
∫

A

G[N]T(Niti + Nj tj + Nktk) dA −
∫

ljk

q[N]T(Niti + Nj tj + Nktk) dljk

+
∫

lij

hT a[N]T(Niti + Nj tj + Nktk) dlij (5.51)

Again, on integration we obtain

GA

12




2ti + tj + tk
ti + 2tj + tk
ti + tj + 2tk


− ql jk

6




0.0
2tj + tk
tj + 2tk


+ hT alij

6




2ti + tj
ti + 2tj

0.0


 (5.52)
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If the thickness is constant, the above relations reduce to the same set of equations as
in Section 5.2.

5.5 Three-dimensional Problems

The formulation of a three-dimensional problem follows a similar approach as explained
previously for two-dimensional plane geometries but with an additional third dimension.
The finite element equation is the same as in Equation 5.1, that is,

[K]{T} = {f} (5.53)

For a linear tetrahedral element, as shown in Figure 5.14, the temperature distribution
can be written as

T = NiTi + NjTj + NkTk + NlTl (5.54)

The gradient matrix is given as

{g} =




∂T

∂x

∂T

∂y

∂T

∂z




=




∂Ni

∂x

∂Nj

∂x

∂Nk

∂x

∂Nl

∂x

∂Ni

∂y

∂Nj

∂y

∂Nk

∂y

∂Nl

∂y

∂Ni

∂z

∂Nj

∂z

∂Nk

∂z

∂Nl

∂z







Ti

Tj

Tk

Tl


 = [B]{T} (5.55)

The thermal conductivity matrix becomes

[D] =

kx 0 0

0 ky 0
0 0 kz


 (5.56)

where the off-diagonal terms are assumed to be zero, for the sake of simplicity. On sub-
stituting [D] and [B] into Equation 5.2, we obtain the necessary elemental [K] equation

i

j

k

l

Figure 5.14 A linear tetrahedral element
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1 m 1 m

1 m Insulated

500 °C (top)
100 °C (side)

100 °C (side)

100 °C (bottom)

x1

x3

x2

Figure 5.15 Representation of Example 5.2.1 in three dimensions

as for a two-dimensional plane problem. Similarly, the elemental equation for {f} can be
derived.

In Figure 5.15, an extension of Example 5.2.1 to three dimensions is given for demon-
stration purpose only. As seen, the geometry is extended in the third dimension by 1 m.
The corresponding boundary conditions are also given. The boundary conditions remain
the same, but the boundary sides become boundary surfaces in 3D. Two extra surfaces,
one in the front and another at the back, are also introduced when the problem is extended
to three dimensions. These two extra surfaces are subjected to no heat flux conditions in
order to preserve the two-dimensionality of the problem.

The mesh generated and the solution to this problem are shown in Figure 5.16. As seen,
the solution in the plane perpendicular to the third dimension, x3, is identical to that of the
two-dimensional solution given in Figure 5.6(b). As mentioned previously, the variation of
the temperature in the third dimension is suppressed by imposing a no heat flux condition
on the front and back faces, perpendicular to x3, as shown in Figure 5.15.

5.6 Axisymmetric Problems

In many three-dimensional problems, there is often a geometric symmetry about a refer-
ence axis, and such problems can be solved using two-dimensional elements, provided the
boundary conditions and all field functions are independent of the circumferential direc-
tion (θ direction). The domain can then be represented by axisymmetric ring elements and
analysed in a similar fashion to that of a two-dimensional problem. Figure 5.17 shows
an axisymmetric ring element where the nodes of the finite element model lie in the
r − z plane.



STEADY STATE HEAT CONDUCTION IN MULTI-DIMENSIONS 143

(a) Finite element mesh (b) Temperature contours.
Temperature varies between
100  and 500°C.  Interval
between two contours is 25°C

Figure 5.16 Solution for Example 5.2.1 on a three-dimensional mesh, temperature at the
centre point, (0.5, 0.5, 0.5), of the cube is 200.66 ◦C

z

q

r

Figure 5.17 An axisymmetric problem
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The Galerkin formulation and the element equations are similar to those for two-
dimensional heat transfer problems, but are different owing to the ring nature of the
elements.

The differential equation in a cylindrical coordinate system (r, z) for steady state is

kr

∂2T

∂r2
+ kr

r

∂T

∂r
+ kθ

r2

∂2T

∂θ2
+ kz

∂2T

∂z2
+ G = 0 (5.57)

An axisymmetric problem is independent of the angle θ and hence Equation 5.57
reduces to

kr

∂T 2

∂r2
+ kr

r

∂T

∂r
+ kz

∂2T

∂z2
+ G = 0 (5.58)

This can be rewritten, if the thermal conductivity in the radial direction, kr is constant, as

1

r

[
kr

∂

∂r

(
r
∂T

∂r

)]
+ kz

∂2T

∂z2
+ G = 0 (5.59)

The boundary conditions are

T = Tb on 	1

kr

∂T

∂r
l + kz

∂T

∂z
n + h(T − Ta) + q = 0 on 	2 (5.60)

The temperature distribution is described as follows:

T = NiTi + NjTj + NkTk (5.61)

which is similar in form to that of a linear triangular plane element, where

Ni = 1

2A
(ai + bir + ciz)

Nj = 1

2A
(aj + bj r + cj z)

Nk = 1

2A
(ak + bkr + ckz) (5.62)

The area, A, is calculated from

2A = det

∣∣∣∣∣∣
1 ri zi

1 rj zj

1 rk zk

∣∣∣∣∣∣ (5.63)

Other constants in Equation 5.62 are defined as

ai = rj zk − rkzj ; bi = zj − zk; ci = rk − rj

aj = rkzi − rizk; bj = zk − zi; cj = ri − rk

ak = rizj − rj zi; bk = zi − zj ; ck = rj − ri (5.64)
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5.6.1 Galerkin’s method for linear triangular axisymmetric elements

The Galerkin method for axisymmetric equations results in the following integral form∫



Ni

[
kr

r

∂

∂r

(
r
∂T

∂r

)
+ kz

∂2T

∂z2
+ G

]
d
 = 0 (5.65)

The spatial approximation of temperature is given by Equation 5.61. As in the previous
sections, the substitution of the spatial approximation will result in the familiar final form
of the matrix equation as

[K]{T} = {f} (5.66)

where
[K] =

∫



[B]T[D][B] d
 +
∫

	

h[N]T[N] d	 (5.67)

Here,

[B] =




∂T

∂x

∂T

∂y


 =




∂Ni

∂r

∂Nj

∂r

∂Nk

∂r

∂Ni

∂z

∂Nj

∂z

∂Nk

∂z


 = 1

2A

[
bi bj bk

ci cj ck

]
(5.68)

and

[D] =
[
kr 0
0 kz

]
(5.69)

In Equation 5.67, the volume 
 is defined as

dV = 2πr dA (5.70)

where r is the radius, which varies and can be approximated using linear shape functions as

r = Niri + Njrj + Nkrk (5.71)

Substituting into Equation 5.67 and integrating, we obtain

[K] = 2πrkr

4A


 b2

i bibj bibk

bibj b2
j bj bk

bibk bjbk b2
k


+ 2πrkz

4A


 c2

i cicj cick

cicj c2
j cj ck

cick cj ck c2
k




+ 2πhl ij

12


3ri + rj ri + rj 0.0

ri + rj ri + 3rj 0.0
0.0 0.0 0.0


 (5.72)

where
r = ri + rj + rk

3
(5.73)

Similarly,

{f} =
∫




G[N]T d
 −
∫

	

q[N]T d	 +
∫

	

hTa[N]T d	

= 2πGA

12


2 1 1

1 2 1
1 1 2






ri
rj
rk


− 2πql jk

6




0
2rj + rk
rj + 2rk


+ 2πhT alij

6




2ri + rj
ri + 2rj

0


 (5.74)
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It is possible to approximately recover the two-dimensional plane problem by substi-
tuting a very large value for the radius r . In order to clarify the axisymmetric formulation,
an example problem is solved as follows.

Example 5.6.1 Calculate the stiffness matrix and loading vector for the axisymmetric ele-
ment, shown in Figure 5.18, with heat generation of G = 1.2 W/cm3. The heat transfer
coefficient on the side ij is 1.2 W/cm2K and the ambient temperature is 30 ◦C. The heat flux
on the side jk is equal to 1 W/cm2. Assume the thermal conductivities kr = kz = 2 W/cm ◦C.

The solution to this problem starts with the calculation of various terms in the stiffness
matrix (Equation 5.72).

bi = zj − zk = −2.0

bj = zk − zi = 2.0

bk = zi − zj = 0.0

ci = xk − xj = −5.0

cj = xi − xk = −5.0

ck = xj − xi = 10.0 (5.75)

From Equation 5.63, the value of 2A is 20 cm2. Similarly, r from Equation 5.73 is cal-
culated as being 20 cm (a reference axis at r = 0.0 is assumed). The coefficients used in the
stiffness matrix can also be calculated as

2πrkr

4A
= 2πrkz

4A
= 2π (5.76)

Similarly,
2πhl ij

12
= 2π (5.77)

Note that the length of the convective side lij is calculated as

lij =
√

(xi − xj )2 + (yi − yj )2 = 10 cm (5.78)

Substituting into Equation 5.72 gives

[K] = 2π


 99 61 −50

61 119 −50
−50 −50 100


 (5.79)

(15, 10) (25, 10)

(20, 12)

i j

k

Figure 5.18 An axisymmetric problem
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Now, to calculate the loading vector, we need to determine the relevant coefficients,
that is,

2πhT alij

6
= 120π (5.80)

Similarly,
2πql jk

6
= 1.8π (5.81)

Substituting the coefficients and other values into Equation 5.74, we obtain

{f} = 2π




3337.5
3879.5
− 18.5


 (5.82)

5.7 Summary

In this chapter, an extension of the steady state heat conduction analysis to multi-dimensions
has been given. All commonly encountered approximations, namely, two-dimensional,
three-dimensional and axisymmetric, have been discussed. Most of the boundary conditions
have also been implemented and explained via examples. We trust the reader will appreciate
the difficulties associated with such multi-dimensional calculations and that the exercises
given in this chapter will prove useful for further understanding of multi-dimensional steady
state heat conduction.

5.8 Exercise

Exercise 5.8.1 A square plate of size 100 cm by 100 cm is subjected to an isothermal bound-
ary condition of 500 ◦C on the top and to a convection environment on all the remaining
three sides of 100 ◦C with a heat transfer coefficient of 10 W/m2K. The thermal conduc-
tivity of the plate is 10 W/m2K. Assume the thickness of the plate is 1 cm. Determine the
temperature distribution in the plate using (a) two triangles and (b) eight triangles. Cal-
culate the temperature and heat fluxes in the x and y directions at a location (x = 30 cm,
y = 30 cm).

Exercise 5.8.2 If in Exercise 5.8.1, there is a uniform heat generation of 2 W/cm3, and
a line source of 5 W/cm at a location of (x = 30 cm and y = 30 cm) then, calculate the
new temperature distribution using (a) two triangles and (b) eight triangles. Calculate the
temperature at the location (x = 40 cm, y = 40 cm) and the heat fluxes in both the x and y
directions.

Exercise 5.8.3 Repeat Exercise 5.8.1 using (a) one rectangle (b) four rectangles.

Exercise 5.8.4 Repeat Exercise 5.8.2 using (a) one rectangle (b) four rectangles.
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Exercise 5.8.5 In Exercise 5.8.1, if the thickness increases uniformly from 1 cm from the
bottom edge to 3 cm at the top edge, re-solve the problem with (a) two triangles and (b) eight
triangles.

Exercise 5.8.6 Calculate the stiffness matrix and loading vector for the axisymmetric ele-
ment shown in Figure 5.19 with a heat generation of G = 1 W/cm3, the heat transfer coef-
ficient on the side ij is 1.0 W/cm2K and the ambient temperature is 25 ◦C. The heat flux on
the side jk is equal to 0.5 W/cm2. Assume the thermal conductivities kr = kz = 1.5W/m ◦C.

Exercise 5.8.7 An internal combustion (IC) engine cylinder is exposed to hot gases of
1000 ◦C on the inside wall with a heat transfer coefficient of 25 W/m2C as shown in
Figure 5.20. The external surface is exposed to a coolant at 100 ◦C with a heat transfer
coefficient of 100 W/m2 ◦C on the top half of the cylinder, while the bottom half of the
cylinder is exposed to a coolant at 80 ◦C with a heat transfer coefficient of 200 W/m2 ◦C.
Calculate the temperature distribution in the cylinder wall with four axisymmetric elements.

q = 0.5 W/cm2

h = 1 W/cm2 K
Ta = 25 °C

G = 1 W/cm3

Figure 5.19 An axisymmetric element

20 cm

20 cm

Ta = 100 °C

1000 °C

20 cm

h = 100 W/m2 °C

Ta = 80 °C
h = 200 W/m2 °C

Figure 5.20 Cylinder of an IC engine
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6

Transient Heat Conduction
Analysis

6.1 Introduction

In the previous chapters, we have discussed steady state heat conduction in which the
temperature in a solid body was assumed to be invariant with respect to time. However,
many practical heat transfer applications are unsteady (transient) in nature and in such
problems the temperature varies with respect to time. For instance, in many components
of industrial plants such as boilers, refrigeration and air-conditioning equipment, the heat
transfer process is transient during the initial stages of operation. Other transient processes
include crystal growth, casting processes, drying, heat transfer associated with the earth’s
atmosphere, and many more. It is therefore obvious that the analysis of transient heat
conduction is very important.

Analytical techniques such as variable separation, which are employed to solve transient
heat conduction problems, are of limited use (Ozisik 1968), and a solution for practical heat
transfer problems by these methods is difficult. Thus, it is essential to develop numerical
solution procedures to solve transient heat conduction problems. In the following section,
a simplified analytical method for the solution of transient problems is presented before
discussing the finite element solution for such problems in Section 6.3.

6.2 Lumped Heat Capacity System

In this section, we consider the transient analysis of a body in which the temperature is
assumed to be constant at any point within and on the surface of the body at any given
instant of time. It is also assumed that the temperature of the whole body changes uniformly
with time. Such an analysis is called a lumped heat capacity method and is a simple and
approximate procedure in which no spatial variation in temperature is allowed. The change

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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t < 0
T = To

Liquid,
Ta < To

Hot metal body
T(t)

Figure 6.1 Lumped heat capacity system. A hot metal body is immersed in a liquid
maintained at a constant temperature

in temperature in such systems varies only with respect to time. It is therefore obvious
that the lumped heat capacity analysis is limited to small-sized bodies and/or high thermal
conductivity materials.

Consider a body at an initial temperature To, immersed in a liquid maintained at a
constant temperature Ta, as shown in Figure 6.1. At any instant in time, the convection
heat loss from the surface of the body is at the expense of the internal energy of the body.
Therefore, the internal energy of the body at any time will be equal to the heat convected
to the surrounding medium, that is,

−ρcpV
dT

dt
= hA(T (t) − Ta) (6.1)

where ρ is the density, cp is the specific heat and V is the volume of the hot metal body; A is
the surface area of the body; h is the heat transfer coefficient between the body surface and
the surrounding medium; t is the time and T (t) is the instantaneous temperature of the body.

Equation 6.1 is a first-order differential equation in time, which requires an initial
condition to obtain a solution. As mentioned previously, the initial temperature of the body
at time t = 0, is To. Applying the variable separation concept to Equation 6.1, we get

dT

T (t) − Ta
= − hA

ρcpV
dt (6.2)

Integrating between temperatures To and T (t), we obtain∫ T (t)

To

dT

T (t) − Ta
= −

∫ t

0

hA

ρcpV
dt (6.3)
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Note that the temperature changes from To to T (t) as the time changes from 0 to t .
Integration of the above equation results in a transient temperature distribution as follows:

ln

(
T − Ta

To − Ta

)
= − hAt

ρcpV
(6.4)

or

T − Ta

To − Ta
= e

[
− hA

ρcpV

]
t

(6.5)

The quantity ρCpV/hA is referred to as the time constant of the system because it
has the dimensions of time. When t = ρCpV/hA, it can be observed that the temperature
difference (T (t) − Ta) has a value of 36.78% of the initial temperature difference (To − Ta).

The lumped heat capacity analysis gives results within an accuracy of 5% when

h(V/A)

ks
< 0.1 (6.6)

where ks is the thermal conductivity of the solid. It should be observed that (V/A) represents
a characteristic dimension of the body. The above non-dimensional parameter can thus be
rewritten as hL/ks, which is known as the Biot number. The Biot number represents a ratio
between conduction resistance within the body to convection resistance at the surface of the
hot body (Readers should consult Chapter 1 for the meaning of conduction and convection
resistance).

Owing to the variability of the convection heat transfer coefficient, which can often vary
as much as 25% in many heat transfer problems, a lumped system analysis is often consid-
ered as a realistic approximation even if the Biot number is slightly above 0.1. However, for
higher Biot numbers, this method is certainly not valid. In such situations, numerical meth-
ods such as the finite element method are ideal in obtaining solutions with better accuracy.

6.3 Numerical Solution

Heat conduction solutions for many geometric shapes of practical interest cannot be found
using the charts available for regular geometries (Holman 1989). Because of the time-
dependent boundary, or interface conditions, prevalent in many transient heat conduction
problems, analytical or lumped solutions are also difficult to obtain. In such complex
situations, it is essential to develop approximate time-stepping procedures to determine the
transient temperature distribution.

6.3.1 Transient governing equations and boundary and initial
conditions

The transient heat conduction equation for a stationary medium is given by (Chapter 1)

∂

∂x

(
kx(T )

∂T

∂x

)
+ ∂

∂y

(
ky(T )

∂T

∂y

)
+ ∂

∂z

(
kz(T )

∂T

∂z

)
+ G = ρcp

∂T

∂t
(6.7)
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where kx(T ), ky(T ) are kz(T ) are the temperature-dependent thermal conductivities in the
x, y and z directions respectively. The boundary conditions for this type of problem are

T = Tb on 	b (6.8)

and

kx(T )
∂T

∂x
l + ky(T )

∂T

∂y
m + kz(T )

∂T

∂z
n + q + h(T − Ta) = 0 on 	q (6.9)

where, 	b ∪ 	q = 	 and 	b ∩ 	q = 0. 	 represents the whole boundary. In the above
equation, l, m and n are direction cosines, h is the heat transfer coefficient, Ta is the
atmospheric temperature and q is the boundary heat flux. The initial condition for the
problem is

T = To at t = 0.0 (6.10)

It is now possible to solve the above system, provided that appropriate spatial and
temporal discretizations are available. Before dealing with the temporal discretization, we
introduce in the following subsection, the standard Galerkin weighted residual form for the
transient equations.

6.3.2 The Galerkin method

In this subsection, the application of the Galerkin method for the transient equations sub-
jected to appropriate boundary and initial conditions is addressed. The temperature is
discretized over space as follows:

T (x, y, z, t) =
n∑

i=1

Ni(x, y, z)Ti(t) (6.11)

where Ni are the shape functions, n is the number of nodes in an element, and Ti(t) are
the time-dependent nodal temperatures. The Galerkin representation of Equation 6.7 is∫




Ni

[
∂

∂x

(
kx(T )

∂T

∂x

)
+ ∂

∂y

(
ky(T )

∂T

∂y

)
+ ∂

∂z

(
kz(T )

∂T

∂z

)
+ G − ρcp

∂T

∂t

]
d
 = 0

(6.12)

Employing integration by parts on the first three terms of Equation 6.12, we get

−
∫




[
kx(T )

∂Ni

∂x

∂T

∂x
+ ky(T )

∂Ni

∂y

∂T

∂y
+ kz(T )

∂Ni

∂z

∂T

∂z
− NiG + Niρcp

∂T

∂t

]
d


+
∫

	q

Nikx(T )
∂T

∂x
ld	q +

∫
	q

Niky(T )
∂T

∂y
md	q +

∫
	q

Nikz(T )
∂T

∂z
nd	q = 0 (6.13)

Note that from Equation 6.9,∫
	q

Nikx(T )
∂T

∂x
ld	q +

∫
	q

Niky(T )
∂T

∂y
md	q +

∫
	q

Nikz(T )
∂T

∂z
nd	q

= −
∫

	q

Niqd	q −
∫

	q

Nih(T − Ta)d	q (6.14)
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On substituting the spatial approximation from Equation 6.11, Equation 6.13 finally
becomes

−
∫




[
kx(T )

∂Ni

∂x

∂Nj

∂x
Tj (t) + ky(T )

∂Ni

∂y

∂Nj

∂y
Tj (t) + kz(T )

∂Ni

∂z

∂Nj

∂z
Tj (t)

]
d


+
∫




[
NiG − Niρcp

∂Nj

∂t
Tj (t)

]
d
 −

∫
	q

Niqd	q −
∫

	q

Nih(T − Ta)d	q = 0 (6.15)

where i and j represent the nodes. Equation 6.15 can be written in a more convenient form
as

[C]

{
∂T
∂t

}
+ [K]{T} = {f} (6.16)

or

[Cij ]

{
∂Tj

∂t

}
+ [Kij ]{Tj } = {fi} (6.17)

where

[Cij ] =
∫




ρcpNiNj d
 (6.18)

[Kij ] =
∫




[
kx(T )

∂Ni

∂x

∂Nj

∂x
{Tj } + ky(T )

∂Ni

∂y

∂Nj

∂y
{Tj } + kz(T )

∂Ni

∂z

∂Nj

∂z
{Tj }

]
d


+
∫

	

hNiNj d	 (6.19)

and
{fi} =

∫



NiGd
 −
∫

	q

qNid	q +
∫

	q

NihTad	 (6.20)

In matrix form,

[C] =
∫




ρcp[N]T[N] d
 (6.21)

[K] =
∫




[B]T[D][B]d
 +
∫

	

h[N]T[N] d	 (6.22)

and
{f} =

∫



G[N]Td
 −
∫

	q

q[N]Td	q +
∫

	

hTa[N]Td	 (6.23)

Since kx(T ), ky(T ) and kz(T ) are functions of temperature, Equation 6.16 is non-linear
and requires an iterative solution. If kx, ky and kz are independent of temperature, then
Equation 6.16 is linear in form.

6.4 One-dimensional Transient State Problem

The relation derived in Equation 6.16 is employed here to illustrate the application to a
one-dimensional transient problem using a linear element as shown in Figure 6.2
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i j

l

x

Cross-sectional area, A

Figure 6.2 One-dimensional linear element

The temperature T is represented in the element by

T = NiTi + NjTj = [N]{T} (6.24)

Note that i and j in the above equation represent the nodes i and j of the element
shown in Figure 6.2. The shape functions in Equation 6.24 are defined as

Ni = 1 − x

l

Nj = x

l
(6.25)

The spatial derivative of temperature is given as

∂T

∂x
= ∂Ni

∂x
Ti + ∂Nj

∂x
Tj = −1

l
Ti + 1

l
Tj = [B]{T} (6.26)

The relevant matrices, as discussed in the previous section (Equation 6.16), are

[C] =
∫




ρcp[N]T [N]d
 =
∫

l

ρcpA

[
N2

i NiNj

NiNj N2
j

]
dl (6.27)

Note that d
 is replaced by Adl in the above equation. Here, A is the uniform cross-
sectional area of a one-dimensional body. The integration of Equation 6.27 results in (for
details of the integration, refer to Chapter 3 and Appendix B)

[C] = ρcplA

6

[
2 1
1 2

]
(6.28)

Similarly, the [K] matrix and load vector {f} can be written as

[K] = Akx

l

[
1 −1

−1 1

]
+ hP l

6

[
2 1
1 2

]
(6.29)

and

{f} = GAl

2

{
1
1

}
− qP l

2

{
1
1

}
+ hTaP l

2

{
1
1

}
(6.30)
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where P is the perimeter of the one-dimensional body. Substituting Equations 6.28 to 6.30
into Equation 6.16, for a domain with only one element, gives

ρcplA

6

[
2 1
1 2

]


∂Ti

∂t

∂Tj

∂t


+

(
Akx

l

[
1 −1

−1 1

]
+ hP l

6

[
2 1
1 2

]){
Ti

Tj

}

= GAl

2

{
1
1

}
− qP l

2

{
1
1

}
+ hTaP l

2

{
1
1

}
(6.31)

The above equation is a general representation of a one-dimensional problem with one
linear element. All the terms are included irrespective of whether or not boundary fluxes
and heat generation are present. We shall appropriately modify Equation 6.31, when solving
the numerical problems.

Equation 6.31 is semi-discrete as it is discretized only in space. We now require a
method of discretizing the transient terms of Equation 6.31. The following subsections
give the details of how the transient terms will be discretized.

6.4.1 Time discretization using the Finite Difference Method (FDM)

As may be seen from the semi-discrete form of Equation 6.31 (or 6.16), the differential
operator involving the time-dependent term still remains to be discretized. In this section, a
numerical approximation of the transient terms, using the Finite Difference Method (FDM),
is considered.

Figure 6.3 clarifies a typical temperature variation in the time domain between the n

and n + 1 time levels. Using a Taylor series, we can write the temperature at the n + 1th
level as

T n+1 = T n + �t
∂T

∂t

n

+ �t2

2

∂2T n

∂t2
+ · · · (6.32)

Temperature variation

Tn + 1

t n + 1

T n

tn

∆T

∆t

T

t

Figure 6.3 Temperature variation within a time step
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If the second- and higher-order terms in the above equation are neglected, then

∂T

∂t

n

≈ T n+1 − T n

�t
+ O(�t) (6.33)

which is first-order accurate in time. If we now introduce a parameter θ such that

T n+θ = θT n+1 + (1 − θ)T n (6.34)

into Equation 6.16 then, along with Equation 6.33, we have

[C]

{
Tn+1 − Tn

�t

}
+ [K]{T}n+θ = {f}n+θ (6.35)

or

[C]

{
Tn+1 − Tn

�t

}
+ [K]

{
θTn+1 + (1 − θ)Tn

}
= θ{f}n+1 + (1 − θ){f}n (6.36)

The above equation can be rearranged as follows:

([C] + θ�t[K]) {T}n+1 = ([C] − (1 − θ)�t[K]) {T}n + �t
(
θ{f}n+1 + (1 − θ){f}n

)
(6.37)

Equation 6.37 gives the nodal values of temperature at the n + 1 time level. These
temperature values are calculated using the n time level values. However, both the n + 1
and n time level values of the forcing vector {f} must be known. By varying the parameter
θ , different transient schemes can be constructed, which are shown in Table 6.1 for varying
values of θ .

In the following numerical example, we demonstrate how the Crank–Nicolson time-
stepping scheme can be used to solve a one-dimensional transient problem.

Example 6.4.1 In Example 3.5.1, let us assume that the initial temperature of the fin is
equal to the atmospheric temperature, 25◦C. If the base temperature is suddenly raised to a
temperature of 100◦C, and maintained at that value, determine the temperature distribution
in the fin with respect to time. Assume a heat capacity of 2.42 × 106 W/m3◦C.

Let us assume that the problem is to be solved using the Crank–Nicolson method, in
which θ is equal to 0.5. Assume a time step, �t , of 0.1 s. Equation 6.37 can be rewritten
with the given value for θ and �t as

([C] + 0.5 × 0.1[K]){T}n+1 = ([C] − 0.5 × 0.1[K]){T}n + 0.1{f} (6.38)

Table 6.1 Different time-stepping schemes

θ Name of the scheme Comments

0.0 Fully explicit scheme Forward difference method
1.0 Fully implicit scheme Backward difference method
0.5 Semi-implicit scheme Crank–Nicolson method
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100°C
32 Insulated

2 cm

T = 25°C
h = 200 W/m2°C

1

x

Figure 6.4 One-dimensional transient heat transfer. Two elements and three nodes

If we consider two elements, as shown in Figure 6.4, we have from Example 3.5.1,

[K]1 = [K]2 =
[

0.124 −0.118
−0.118 0.124

]
(6.39)

and

{f}1 = {f}2 =
{

0.15
0.15

}
(6.40)

The [C] matrix can be calculated as

[C]1 = [C]2 = ρcpAL

6

[
2 1
1 2

]
=
[

0.0484 0.0242
0.0242 0.0484

]
(6.41)

On assembling the stiffness matrix and load vector, we obtain

[K] =

 0.124 −0.118 0.00

−0.118 0.248 −0.118
0.00 −0.118 0.124


 (6.42)

and

{f} =



0.15
0.30
0.15


 (6.43)

The global capacitance matrix is

[C] =

0.0484 0.0242 0.00

0.0242 0.0968 0.0242
0.00 0.0242 0.0484


 (6.44)

Substituting into Equation 6.38, we get at �t = 0.1 s
0.0546 0.0183 0.0

0.0183 0.1092 0.0183
0.00 0.0183 0.0546






T1

T2

T3


 =


0.0422 0.0301 0.00

0.0301 0.0844 0.0301
0.00 0.0301 0.0422






25.0
25.0
25.0


+




0.015
0.030
0.015




(6.45)
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From the second and third equations of the above system, we calculate that T2 = 11.69◦C
and T3 = 29.45◦C.

Similarly at time t = 0.2 s, we arrive at the following values:
0.0546 0.0183 0.0

0.0183 0.1092 0.0183
0.00 0.0183 0.0546






T1

T2

T3


 =


0.0422 0.0301 0.00

0.0301 0.0844 0.0301
0.00 0.0301 0.0422






100.0
11.69
29.45


+




0.015
0.030
0.015




(6.46)
Solution of the above system results in T2 = 24.68◦C and T3 = 21.22◦C. It is observed

that the solution exhibits spatial and temporal oscillation at the start of the calculations.
These oscillations can be eliminated via suitable mesh refinement.

In the above example, it has been demonstrated how the transient solution is calculated.
In the following example, a similar case is considered using an explicit computer program
(see Chapter 10).

Example 6.4.2 A rod of 1 unit width and 20 units in length is initially assumed to be at 0◦C.
The left-hand side of the domain is subjected to a uniform heat flux of 1 and all other sides
are assumed to be insulated as shown in Figure 6.5. Assume all other properties are equal
to unity and compute the temperature distribution and compare with a known analytical
solution.

The analytical solution for this problem is given by Carslaw and Jaeger (Carslaw and
Jaeger 1959) as

T (x, t) = 2(t/π)1/2
[

exp (−x2/4t) − (1/2)x

√
π

t
erf c

(
x

2
√

t

)]
(6.47)

Figure 6.6 shows the two different meshes used in the calculations. Figure 6.6(a) is a
coarse mesh with 122 nodes and 158 elements, and Figure 6.6(b) shows a mesh of 2349

To = 0
q = 1

1

20

Insulated

Figure 6.5 One-dimensional transient heat conduction analysis in a rod

(a) Coarse finite element mesh, 122 nodes and 158 elements

(b) Fine finite element mesh, 2349 nodes and 4276 elements

Figure 6.6 Linear triangular element meshes
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(a) Temperature distribution on the coarse mesh, Tmax = 1.12 at the right-hand face

(b) Temperature distribution on the fine mesh, Tmax = 1.128 at the left-hand face

Figure 6.7 Temperature distribution at t = 1
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Figure 6.8 Temperature distribution along the length of the rod at t = 1

nodes and 4276 elements. This is a one-dimensional problem, which is solved using a two-
dimensional forward difference (explicit) computer program.

Figure 6.7 shows the temperature contours at a time of unity. As seen, the results gen-
erated from both meshes are very similar. The temperature variation along the length of the
rod is shown in Figure 6.8. The results of both meshes indicate excellent agreement with the
analytical solution.

6.4.2 Time discretization using the Finite Element Method (FEM)

In the previous subsection, the temporal term in the transient heat conduction equation
has been discretized using the finite difference method. Here, we concentrate on the use
of the finite element method to discretize the equation in the time domain. In order to
derive the appropriate transient relations using the FEM, let us rewrite the semi-discrete
one-dimensional Equation 6.16. In this equation, the temperature is now discretized in the
time domain as (refer to Figure 6.9).

T (t) = Ni(t)Ti(t) + Nj(t)Tj (T ) (6.48)

where the linear shape functions Ni(t) and Nj(t) are given as

Ni(t) = 1 − t

�t
; Nj(t) = t

�t
(6.49)
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Ti (t)

Ni (t) Nj (t)

Tj (t)
i j

∆t

Figure 6.9 Time discretization between nth (i) and n + 1th (j ) time levels

The time derivative of the temperature is thus written as

dT (t)

dt
= dNi(t)

dt
Ti(t) + dNj(t)

dt
Tj (t) (6.50)

Substituting Equation 6.49 into Equation 6.50, we get

dT (t)

dt
= − 1

�t
Ti(t) + 1

�t
Tj (t) (6.51)

Substituting Equations 6.48 and 6.51 into Equation 6.16 and applying the weighted
residual principle (Galerkin method), we obtain for a time interval of �t ,∫

�t

{
Ni(t)

Nj (t)

}[
[C]

(
−Ti(t)

�t
+ Tj (t)

�t

)
+ [K]

(
Ni(t)Ti(t) + Nj(t)Tj (t)

)− {f}
]

dt = 0

(6.52)
Employing (see Appendix B)∫

�t

Ni(t)
aNj (t)

bdt = a!b!

(a + b + 1)!
�t (6.53)

we obtain the characteristic equation over the time interval �t as

[C]

2�t

[−1 1
−1 1

]{
Ti(t)

Tj (t)

}
+ [K]

3

[
2 1
1 2

]{
Ti(t)

Tj (t)

}
= 1

2

{
f1

f2

}
(6.54)

The above equation involves the temperature values at the nth and n + 1th level. A
quadratic variation of temperature with respect to time may be derived in a similar fashion.

6.5 Stability

The stability of a numerical scheme may be obtained using a Fourier analysis (Hirsch
1988; Lewis et al. 1996). Here, we give a brief summary of the stability-related issues of
the time-stepping schemes discussed in this chapter.

Backward Euler : This is an implicit scheme with a backward difference approximation for
the time term. This scheme is unconditionally stable and the accuracy of the scheme is
governed by the size of the time step.

Forward Euler : This is an explicit scheme with a forward difference approximation to
the time term. The scheme is conditionally stable and the stability limit for the time
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step is given as

�t ≤ l2

bα
(6.55)

where l is the element size and α is the thermal diffusivity.

Central Difference: The central difference approximation of the time term, with an explicit
treatment for the other terms, is unconditionally unstable, and this scheme is not recom-
mended.

Crank–Nicolson Scheme (semi-implicit): Owing to the oscillatory behaviour of this semi-
implicit scheme at larger time steps, it is often termed as a marginally stable scheme.

6.6 Multi-dimensional Transient Heat Conduction

A finite element solution for multi-dimensional problems follows the same procedure as that
for a one-dimensional case. However, the matrices [C], [K] and {f} are different because
of their multi-dimensions. For more details on the matrices, the reader should refer to
Chapter 3. A numerical problem, using a two- and three-dimensional approximation, is
solved in the following example.

Example 6.6.1 A square plate and a cube are subjected to different thermal boundary con-
ditions as shown in Figure 6.10. If the initial temperature of both the domains is 0 ◦C,
calculate the transient temperature distribution within these two geometries. Also, plot the
temperature change with respect to time at a point (0.5, 0.5) in the 2D geometry and at (0.5,
0.5, 0.5) in the three-dimensional geometry.

The results from both the two- and three-dimensional geometries should be identical
because of the insulated conditions on the two vertical sides of the cube.

Figure 6.11 shows the time evolution of the temperature contours. The first two figures,
that is, Figure 6.11(a) and (b), show a zero temperature value at the centre of the plate.
However, heat from the boundaries rapidly diffuses into the domain and the temperature
reaches a steady value of 200.4 ◦C at the centre by the time t = 0.5 s. In Figure 6.12, we

Insulated

Insulated

To = 0°C

500°C

100°C 100°C(0.5, 0.5)

100°C 100°C

100°C

500°C

100°C

Figure 6.10 Square and cubical domains with thermal boundary conditions
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(a) Temperature distribution at t = 0.001 s,
T (0.5, 0.5) = 0.0°C

(b) Temperature distribution at t = 0.01 s,
T (0.5, 0.5) = 0.0°C

(c) Temperature distribution at t = 0.1 s,
T (0.5, 0.5) = 155.38°C

(d) Temperature distribution at t = 0.5 s,
T (0.5, 0.5) = 200.40°C

Figure 6.11 Transient temperature distribution in a 2D plane geometry
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Figure 6.12 Temperature distribution at the centre of a square domain (cube in 3D) with
respect to time
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show the temperature variation at the centre point of both the two- and three-dimensional
geometries with respect to time. It may be seen that both the results are identical. It should
be noted that the temperature increases rapidly and reaches a value of 200.4 at about four
seconds and thereafter remains constant.

6.7 Phase Change Problems—Solidification and Melting

Materials processing, metallurgy, purification of metals, growth of pure crystals from melts
and solutions, solidification of casting and ingots, welding, electroslag melting, zone melt-
ing, thermal energy storage using phase change materials, and so forth, involve melting
and solidification. These phase change processes are accompanied by either absorption or
release of thermal energy. A moving boundary exists, which separates the two thermo-
physical states in which the thermal energy is either absorbed or liberated. If we consider
the solidification of a casting, or ingot, the super heat in the melt and the latent heat liber-
ated at the solid–liquid interface are transferred across the solidified metal interface and the
mould, encountering at each of these stages a certain thermal barrier. In addition, the metal
shrinks as it solidifies and an air gap is formed between the metal and the mould. Thus,
additional thermal resistance is encountered. The heat transfer processes that occur are
complex. The cooling rates employed range from 10−5 to 1010 K/s and the corresponding
solidification systems extend from depths of several metres to a few micrometres. These
various cooling rates produce different microstructures and hence a variety of thermo-
mechanical properties. During the solidification of binary and multi-component alloys, the
physical phenomena become more complicated owing to phase transformation taking place
over a range of temperatures. During the solidification of an alloy, the concentrations vary
locally from the original mixture, as material may have been preferentially incorporated,
or rejected, at the solidification front. This process is called macro-segregation. The mate-
rial between the solidus and the liquidus temperatures is partly solid and partly liquid and
resembles a porous medium and is referred to as a mushy zone.

A complete understanding of the phase change phenomenon involves an analysis of
the various processes that accompany it. The most important of these processes, from a
macroscopic point of view, is the heat transfer process. This is complicated by the release,
or absorption, of the latent heat of fusion at the solid–liquid interface. Several methods have
been used to take into account the liberation of latent heat. The following subsections give
a brief account of commonly employed methods that deal with transient heat conduction
during a phase change.

6.7.1 The governing equations

The classical problem involves considering the conservation of energy in the domain, 
,
by dividing this into two distinct domains, 
l (liquid) and 
s (solid), where 
l + 
s = 
.
The energy conservation equation for the one-dimensional case is

ρlcp l
∂T

∂t
= kl

∂2T

∂x2
in 
l (6.56)
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where the subscript l denotes the liquid. Note that in the above equation, the convective
motion is neglected. For details of convection, the reader is referred to Chapter 7. Similarly,
the equation for the solid portion is written as

ρscps
∂T

∂t
= ks

∂2T

∂x2
in 
s (6.57)

where the subscript s represents the solid. The problem will be complete only if the initial
and boundary conditions and the interface conditions are given. The interface conditions are

Tsl = Tf (6.58)

and

−ks

(
∂T

∂x

)
s
= ρsL

ds

dt
− kl

(
∂T

∂x

)
l

on 	sl (6.59)

where sl represents the position of the interface, ds/dt represents the interface velocity
and Tf is the phase change temperature. Equation 6.59 states that the heat transferred by
conduction in the solidified portion is equal to the heat entering the interface by latent heat
of liberation at the interface and the heat coming from the liquid by conduction. The main
complication in solving this classical problem lies in tracking the interface and applying
the interface conditions.

6.7.2 Enthalpy formulation

In the enthalpy method, one single equation is used to solve both the solid and liquid
domains of the problem. A single energy conservation equation is written for the whole
domain as

∂H

∂t
= k

∂2T

∂x2
in 
 (6.60)

where H is the enthalpy function, or the total heat content, which is defined for an isother-
mal phase change as

H(T ) =
∫ T

Tr

ρcs(T )dT if (T ≤ Tf )

H(T ) =
∫ Tf

Tr

ρcs(T )dT + ρL +
∫ T

Tf

ρcl(T )dT if (T ≥ Tl) (6.61)

and, for a phase change over an interval of temperature Ts to Tl, that is, the solidus and
the liquidus temperatures respectively, we have the following:

H(T ) =
∫ Ts

Tr

ρcs(T )dT +
∫ T

Ts

[
ρ

(
dL

dT

)
+ ρcf (T )

]
dT (Ts < T ≤ Tl)

H(T ) =
∫ Ts

Tr

ρcs(T )dT + ρL +
∫ Tl

Ts

ρcf (T )dT +
∫ T

Tl

ρcl(T )dT (T ≥ Tl) (6.62)
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where cf is the specific heat in the freezing interval, L is the latent heat and Tr is a
reference temperature that is below Ts.

One of the earliest and most commonly used methods for solving such problems has
been the ‘effective heat capacity’ method. This method is derived from writing

∂H

∂t
= ∂H

∂T

∂T

∂t
= k

∂2T

∂x2
in 
 (6.63)

We can rewrite the above equation as

ceff
∂T

∂t
= k

∂2T

∂x2
(6.64)

where ceff = ∂H/∂T is the effective heat capacity. This can be evaluated directly from
Equation 6.62 as

ceff = ρcs (T < Ts)

ceff = ρcf + L

Tl − Ts
(Ts < T < Tl)

ceff = ρcl (T > Tl) (6.65)

Figure 6.13 shows the effective heat capacity variation with respect to temperature. As
seen, the effective heat capacity will become infinitely high if the liquidus and solidus
temperatures are close to each other.

In order to demonstrate the effective heat capacity method discussed above, a one-
dimensional phase change problem is considered in the following example.

Example 6.7.1 A phase change problem with an initial temperature of 0.0◦C as shown in
Figure 6.14 is subjected to a cooling temperature of −45.0◦C at the left face and the right

H(T )

H(T )
rcp (T )

rcp(T )

x

LiquidusSolidus

Figure 6.13 Variation of effective heat capacity and enthalpy across the solid–liquid
interface



TRANSIENT HEAT CONDUCTION ANALYSIS 167

0.5

4

T = −45.0°C T l = −0.15°C

T s = −10.15°C

Insulated

Figure 6.14 A one-dimensional solidification problem

side face is subjected to a liquidus temperature of −0.15◦C. The solidus temperature is
−10.15◦C. Determine the temperature distribution with respect to time if the latent heat of
solidification is 70.26, ρcp = 1.0 and k = 1.0. Draw the temperature variation at a distance
of unity from the left side with respect to time.

The unstructured mesh used to solve this problem is shown in Figure 6.15(a). The tem-
perature contours at a time of four units is shown in Figure 6.15(b) and the temperature
variation at a point of unit length from the left face is shown in Figure 6.15(c). These results
show a close agreement with existing results (Lewis et al. 1996).
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(c) Temperature distribution at a point
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(a) Unstructured mesh, nodes: 202, elements: 328

(b) Temperature distribution at t = 4

Figure 6.15 Solution for the phase change problem using the effective heat capacity
method
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6.8 Inverse Heat Conduction Problems

It is often difficult, or even impossible, to measure many quantities in certain heat transfer
problems due to extreme conditions (Examples: heat flux on the surface of a heat shield
of a re-entry vehicle, temperature inside a high temperature furnace, etc.). In some cases,
obtaining experimental data is also very expensive. However, in order to accurately predict
the temperature distribution using numerical methods, practical problems need appropriate
information on the boundary. Even with a minimum of available data at any convenient
location of the body, the finite element method can be constructed to determine the boundary
conditions and the temperature distribution. This process is referred to as inverse modelling
(Beck 1968; Ozisik 1968).

6.8.1 One-dimensional heat conduction

Consider a one-dimensional problem, as shown in Figure 6.16 (infinite wall), to demonstrate
the concepts involved in an inverse heat conduction problem. The sensor is placed at the
right hand surface of the insulated wall. The left side is assumed to be subjected to an
unknown heat flux q(t). The temperature measurements with respect to time are available
at the sensor location. In addition to the temperature values at the sensor location, the
known material properties are also valuable information.

The governing heat conduction equation for this type of problem is given as (for
temperature-independent properties)

k
∂2T

∂x2
= ρcp

∂T

∂t
(6.66)

Sensor
location

Insulated

q(t)
Unknown
heat flux

l

x

Figure 6.16 Heat conduction through a wall. Inverse problem
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with

−k
∂T

∂x
= q(t) at x = 0 (6.67)

k
∂T

∂x
= 0 at x = l (6.68)

and
T = To(x) at t = 0 (6.69)

where q(t) is the unknown heat flux and To(x) is the initial temperature of the body.
The known temperature values at the sensor location are given as

T (tk, xl) = Uk,l (6.70)

where k varies between 1 and the total number of measured data at the sensor location (l)
and tk indicates the corresponding time. Introducing a sensitivity coefficient Zk

k,i as

Tk,i = T ∗
k,i + Zk

k,i(qk − q∗
k ) (6.71)

where Tk,i is the temperature at time tk and location i, T ∗
k,i is the temperature calculated

using q(k) = q(k)∗ in Equation 6.67 and Zk
k,i are the sensitivity coefficients. Note that we

can write, using a Taylor series expansion,

Tk,i = T ∗
k,i + ∂Tk,i

∂qk

|qk=q∗
k
(qk − q∗

k ) + · · · (6.72)

The above equation shows that

Zk
k,i = ∂Tk,i

∂qk

(6.73)

In order to calculate the correct temperatures, the least squares error between the cal-
culated and measured temperature values needs to be minimized, that is,

I∑
i=1

(Uk,i − Tk,i)
2 = 0 (6.74)

where I is the number of sensors in the body. On substitution of Equation 6.71, into
Equation 6.74, and rearranging, we get

qk = q∗
k + �I

i=1Z
k
k,i(Uk,i − T ∗

k,i)

�I
i=1(Z

k
k,i)

2
(6.75)

If we assume only one sensor in the field, the above equation is reduced to

qk = q∗
k + Zk

k(Uk − T ∗
k )

(Zk
k )

2
(6.76)

In practice, the above equation is difficult to use in order to obtain a smooth heat flux
distribution. To arrive at such a smooth heat flux distribution, Beck (Beck 1968) suggested
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a procedure that has a certain number of future time steps (R) from the starting point, and
for a one-sensor problem, this is given as follows:

qk = q∗
k +

R∑
r=1

(Uk+r−1 − T ∗
k+r−1)Z

r
r

R∑
r=1

(Zr
r )

2

(6.77)

The calculation of the sensitivity coefficient is very important in the above equation. It
is normally calculated by solving the following equation:

ρcp

∂Z

∂t
= k

∂2Z

∂x2
(6.78)

with

−k
∂Z

∂x
= 1 at x = 0 (6.79)

k
∂Z

∂x
= 0 at x = l (6.80)

and with an initial condition of Z = 0 at t = 0. Using the above procedure, the inverse
heat conduction problem may be solved via the following steps.

(i) Assume q∗
k = 0 in the first time interval.

(ii) Calculate Tk+r−1 for r = 1, 2, . . . , R (for all sensors) employing the finite element
method and assumed heat flux at the left-hand side qk = q∗

k using Equations 6.66
to 6.69.

(iii) Calculate qk from Equation 6.77.

(iv) Set q∗
k = qk−1 and go to step (ii) and continue until convergence is achieved.

6.9 Summary

In this chapter, we have introduced the transient heat conduction problem and demonstrated
solutions of such a problem via many numerical examples. However, the problems discussed
in this chapter are only the ‘tip of the iceberg’. We recommend that the readers formulate
their own transient heat conduction problems and solve them using the transient computer
programs available from the authors (see Chapter 10). For transient convection problems,
the readers should refer to Chapters 7 and 9.

6.10 Exercise

Exercise 6.10.1 A large block of steel with a thermal conductivity of 40 W/m◦C and a ther-
mal diffusivity of 1.5 × 10−5 m2/s is initially at a uniform temperature of 25◦C. The surface
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is exposed to (a) a heat flux of 3 × 105 W/m2 and (b) a sudden rise in surface temperature
of 200◦C. Calculate the temperature at a depth of 1 cm after a time of 10 seconds for both
cases. Verify the results with analytical results.

Exercise 6.10.2 A fin of length 1 cm is initially at the ambient temperature of 30◦C. If the
base temperature is suddenly raised to a temperature of 150◦C and maintained at that value,
determine the temperature distribution in the fin after 30 seconds if the thermal diffusivity
of the fin material is 1 × 10−5 m2/s. The heat transfer coefficient between the fin surface
and the ambient is 100 W/m2◦C. The cross section of the fin is 6 mm by 5 mm.

Exercise 6.10.3 A short aluminium cylinder 2.5 cm in diameter and 5 cm long is initially
at a uniform temperature of 100◦C. It is suddenly subjected to a convection environment
at 50◦C and h = 400 W/m2◦C. Calculate the temperature at a radial position of 1 cm from
outer surface and a distance of 0.5 cm from one end of the cylinder 10 seconds after exposure
to the environment.

Exercise 6.10.4 A plane wall of thickness 4 mm has internal heat generation of 25 MW/m3

with thermal properties of k = 20 W/m◦C, ρ = 8000 kg/m3 and specific heat cp =
500 J/kg◦C. It is initially at a uniform temperature of 50◦C and is suddenly subjected to
heat generation and a convective boundary condition as shown in Figure 6.17 Calculate
the temperature at a location of 2 mm after 10 seconds.

Exercise 6.10.5 A stainless steel plate size 2 cm × 1 cm is surrounded by an insulating
block as shown in Figure 6.18 and is initially at a uniform temperature of 40◦C with a
convection environment at 40◦C. The plate is suddenly exposed to a radiant flux of 15 kW/m2.
Calculate the temperature at the centre of the top and bottom surfaces after 10 s. Take the
properties of the stainless steel as k = 18 W/mK, ρ = 8000 kg/m3, cp = 0.46 kJ/kg◦C, and
h = 30 W/m2K.

h = 500 W/m2°C
Ta = 30°C

h = 400 W/m2°C
Ta = 100°C

Figure 6.17 Plane wall discretization

2 cm

h, Ta
qrad

1 cm

Figure 6.18 Stainless steel plate
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3 cm

4 mm

−30°C

8°C

Insulated

Figure 6.19 A phase change problem

Exercise 6.10.6 A phase change problem with an initial temperature of 10◦C is imposed
with a cooling temperature of −30◦C at the left face, and the right face is subjected to a liquid
temperature of 8◦C as shown in Figure 6.19. The solidus temperature is 0◦C. Determine the
temperature distribution with respect to time if the latent heat of solidification is 65.0, ρcp =
1 and k = 1.0. Draw the temperature variation at a distance of unity from the left side.
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7

Convection Heat Transfer

7.1 Introduction

In the previous six chapters, the conduction mode of heat transfer has been discussed in
detail. Occasionally, convective heat transfer boundary conditions were discussed in these
chapters whenever appropriate. However, little information on fluid flow characteristics was
given in any of the previous chapters. In the present chapter, the heat transfer mechanism
due to a fluid motion is discussed in detail. This method of heat transfer, which is caused
by fluid motion, is referred to as heat convection.

The study of fluid motion (fluid dynamics) is an important subject that has wide applica-
tion in many engineering disciplines. Several industries use computer-based fluid dynamics
analysis (Computational Fluid Dynamics or CFD) tools for both design and analysis. For
instance, aerospace applications, turbo-machines, weather forecasting, electronic cooling
arrangements and flow in heat exchangers are merely a few examples. There has been a
vast increase in the use of CFD tools in engineering industries in the last two decades,
mainly because of an ever-increasing computing power. In the 1980s, a solution for a rea-
sonably sized three-dimensional fluid dynamics problem was rarely possible on a personal
computer (PC). However, now it is very common for researchers to solve reasonably sized
fluid dynamics problems in three dimensions using such computers.

There are several books written on the topic of computational fluid dynamics, which
include texts explaining the basic solution scheme underlying a successful CFD soft-
ware (Cheung 2002; Donea and Huerta 2003; Fletcher 1988; Gresho and Sani 2000;
Hirsch 1989; Lewis et al. 1996; Pironneau 1989; Zienkiewicz and Taylor 2000), or books
on practical fluid dynamics calculations such as data structure and parallel computing
(Löhner 2001). Several chapters could be written in the present text on the topic of
CFD alone. However, our main interest is to give a practical introduction to the role
of fluid dynamics in heat transport. It is intended that this chapter will give a good start-
ing point to pursue a further education and/or research in fluid dynamics–assisted heat
transport.

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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Cold
fluid
ua

Hot
fluidHot walls

Figure 7.1 Flow and heat transport in a channel

7.1.1 Types of fluid-motion-assisted heat transport

The fluid-motion-assisted heat transfer (heat convection) may be classified into three differ-
ent categories. In order to explain the different types, let us consider the fluid flow through
a two-dimensional channel as shown in Figure 7.1. The inlet to the channel is at the left
side and exit is at the right. Both the top and bottom walls of the channel are at higher
temperatures than the invading fluid. The mechanism here is that the fluid, which is at a
temperature lower than the wall temperature of the channel, comes into contact with the
wall and removes heat by convection. Although this process is termed as being convective,
there are aspects of the diffusion mode of heat transfer that dominate very close to the
hot walls.

It is obvious that flow with a higher incoming velocity will transport heat at a higher
rate. The flow rate is often characterized by a quantity called the Reynolds number, which
is defined as

Re = ρauaL

µa
(7.1)

where ua is the average inlet velocity, L is a characteristic dimension, for example, the
width or height of the channel, ρa is a reference (inlet) density and µa is a reference (inlet)
dynamic viscosity of the fluid. If the Reynolds number is small and below a certain critical
value, the flow is laminar,and if it is above this critical number, then the flow becomes
turbulent. The critical Reynolds number for pipe and channel flows, based on the diameter
or height, is approximately 2000.

In Figure 7.1, if the flow is forced into the channel by means of an external device, for
example, a pump, then the convection process is referred to as forced convection, and the
Reynolds number is normally high (Jaluria 1986; Lewis et al. 1996, 1995b; Massarotti et
al. 1998; Minkowycz et al. 1988; Patnaik et al. 2001; Srinivas et al. 1994). In such situa-
tions, the fluid motion created by the density (or temperature) difference (buoyancy-driven
motion) is negligibly small as compared to the forced motion of the fluid. However, at low
and moderate Reynolds numbers, the motion created by the local density (or temperature)
differences in the fluid is comparable to that of the forced flow. A situation in which the
forced and density difference–driven motions are equally important is called mixed con-
vection transport (Aung and Worku 1986a,b; Gowda et al. 1998). If the forced flow is
suddenly stopped and the fluid is stagnant inside the channel, then the fluid motion will
be entirely influenced by the local density (or temperature) differences until an equilibrium
state is reached, that is, no local differences in density or temperature are present. Such
a flow is often referred to as natural, free or buoyancy-driven convection (de Vahl Davis
1983; Jaluria 1986; Jaluria and Torrance 1986; Nithiarasu et al. 1998).
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7.2 Navier–Stokes Equations

The mathematical model of any fundamental fluid dynamics problem is governed by the
Navier–Stokes equations. These equations are important and represent the fluid as a contin-
uum. The equations conserve mass, momentum and energy, and can be derived following
either an integral or a differential approach. The integral form of the equations is derived
using Reynolds Transport Theorem (RTT) and is discussed in many standard fluid mechan-
ics texts (Shames 1982). The approach we follow in this book is the differential approach
in which a differential control volume is considered in the fluid domain and a Taylor
expansion is used to represent the variation of mass, momentum and energy.

7.2.1 Conservation of mass or continuity equation

The conservation of mass equation ensures that the total mass is conserved, or, in other
words, the total mass of a fluid system is completely accounted for. In order to derive
a general conservation of the mass equation, consider the differential control volume as
shown in Figure 7.2. The reader can assume the control volume to be infinitesimal for
a typical flow problem, such as flow in a channel (Figure 7.1), flow over a flat plate or
the temperature (or density) difference driven circulation of air inside a room as shown in
Figure 7.3.

Let us assume that the mass flux rate entering the control volume (Figure 7.2) is ρu1

in the x1 direction and ρu2 in the x2 direction. It is also assumed that there is no reaction
or mass production within the fluid domain. The Taylor series expansion may be used to
express the mass flux rate exiting the control volume as (refer to Figure 7.2)

(ρu1)x1+�x1 = (ρu1)x1 + �x1

1!

∂(ρu1)

∂x1
+ �x1

2!

2 ∂2(ρu1)

∂x2
1

+ · · · . (7.2)

ru2 + ∆x2 + 
∂ru2

∂x2

ru1 + ∆x1
∂ru1

∂x1

ru1

ru2

∆x1

∆x2

....

+ ....

Figure 7.2 Infinitesimal control volume. Derivation of conservation of mass in a flow field
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Flow direction

Heater

Air circulation

Plate

Trailing edgeLeading edge
(a)

(b)

Figure 7.3 Forced flow over a flat plate and natural convection inside a room

in the x1 direction and

(ρu2)x2+�x2 = (ρu2)x2 + �x2

1!

∂(ρu2)

∂x2
+ �x2

2!

2 ∂2(ρu2)

∂x2
2

+ · · · . (7.3)

in the x2 direction. From an inspection of the control volume shown in Figure 7.2, we can
write the difference between the total mass entering and exiting the control volume as

�x2
[
(ρu1)x1 − (ρu1)x1+�x1

] = −�x2

[
�x1

1!

∂(ρu1)

∂x1
+ �x1

2!

2 ∂2(ρu1)

∂x2
1

+ · · ·
]

(7.4)

Similarly, in the x2 direction

�x1
[
(ρu2)x2 − (ρu2)x2+�x2

] = −�x1

[
�x2

1!

∂(ρu2)

∂x2
+ �x2

2!

2 ∂2(ρu2)

∂x2
2

+ · · ·
]

(7.5)

Note that the total mass is calculated as being the mass flux rate times the perpendicular
area to the following regime. For instance, the total mass entering the control volume in
the x1 direction is �x2 × 1 × ρu1. A unit thickness is assumed in the x3 direction.

Adding Equations 7.4 and 7.5 gives the total mass stored inside the control volume.
Neglecting the second- and higher-order terms, the total mass stored inside the control
volume is

−�x1�x2

[
∂(ρu1)

∂x1
+ ∂(ρu2)

∂x2

]
(7.6)
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The above quantity, stored within the control volume, is equal to the rate of change of
the total mass within the control volume, which is given as

�x1�x2
∂ρ

∂t
(7.7)

We can therefore write

�x1�x2
∂ρ

∂t
= −�x1�x2

[
∂(ρu1)

∂x1
+ ∂(ρu2)

∂x2

]
(7.8)

or

∂ρ

∂t
+ ∂(ρu1)

∂x1
+ ∂(ρu2)

∂x2
= 0 (7.9)

The above equation is known as the equation of conservation of mass, or the continuity
equation for two-dimensional flows. In three dimensions, the continuity equation is

∂ρ

∂t
+ ∂(ρu1)

∂x1
+ ∂(ρu2)

∂x2
+ ∂(ρu3)

∂x3
= 0 (7.10)

If the density is assumed to be constant, then the above equation is reduced to

∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
= 0 (7.11)

Using vector notation, the above equation is written as (divergence-free velocity field)

∇.u = 0 (7.12)

or, using an indicial notation,

∂ui

∂xi

= 0 (7.13)

where i = 1, 2 for a two-dimensional case and i = 1, 2, 3 for three-dimensional flows.

7.2.2 Conservation of momentum

The conservation of momentum equation can be derived in a fashion similar to the con-
servation of mass equation. Here, the momentum equations are derived on the basis of the
conservation of momentum principle, that is, the total force generated by the momentum
transfer in each direction is balanced by the rate of change of momentum in each direction.
The momentum equation has directional components and is therefore a vector equation. In
order to derive the conservation of momentum equation, let us consider the control volume
shown in Figure 7.4.

The momentum entering the control volume in the x1 direction is given as

ρu1�x2u1 = ρu2
1�x2 (7.14)
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(ru2)u1 + ∆x2 ∂x2

∂[(ru2)u1]

(ru1)u1 + ∆x1 ∂x1

∂[(ru1)u1]
∆x2

∆x1

(ru1)u1

(ru2)u1

+ ....

+ ....

Figure 7.4 Infinitesimal control volume in a flow field. Derivation of conservation of
momentum in x1 direction. Rate of change of momentum

Since the momentum equation is a vector equation, the momentum in the x1 direction
will also have a contribution in the x2 direction. The momentum entering the bottom face
in the x1 direction is

ρu2�x2u1 = ρu1u2�x1 (7.15)

A Taylor expansion is employed to work out the x1 momentum, leaving the control
volume. In the x1 direction, we have

ρu2
1�x2 + �x2

∂(ρu2
1)

∂x1
�x1 (7.16)

Similarly, the x1 momentum leaving the x2 direction (top surface) is

ρu1u2�x1 + �x1
∂(ρu1u2)

∂x2
�x2 (7.17)

Note that the second- and higher-order terms in the previous Taylor expansion are
neglected. The rate of change of momentum within the control volume due to the x1

component is written as

�x1�x2
∂(ρu1)

∂t
(7.18)

The net momentum of the control volume is calculated as the ‘momentum exiting the
control volume − momentum entering the control volume + rate of change of the momen-
tum, which is

�x1�x2

[
∂(ρu2

1)

∂x1
+ ∂(ρu1u2)

∂x2
+ ∂(ρu1)

∂t

]
(7.19)

For equilibrium, the above net momentum should be balanced by the net force acting
on the control volume. In order to derive the net force acting on the control volume, refer
to Figure 7.5. From the figure, the total pressure force acting on the control volume in the
x1 direction is written as (positive in the positive x1 direction and negative in the negative
x1 direction)

p�x2 −
[
p + ∂p

∂x1
�x1

]
�x2 = − ∂p

∂x1
�x1�x2 (7.20)
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t11

p

t12

∆x2

∆x1

t12 + ∆x2 ∂x2

∂t12

t11 + ∆x1 ∂x1

∂t11

+ ....

+ ....

p + ∆x1 ∂x1

∂p + ....

Figure 7.5 Infinitesimal control volume in a flow field. Derivation of conservation of
momentum in x1 direction. Viscous and pressure forces

Similarly, the total force due to the deviatoric stress (viscosity or friction) acting on the
control volume in the x1 direction is written as (see Figure 7.5)[

τ11 + ∂τ11

∂x1
�x1

]
�x2 − τ11�x2 +

[
τ12 + ∂τ12

∂x2
�x2

]
�x1 − τ12�x1 (7.21)

Simplifying, we obtain the net force due to the deviatoric stress as

∂τ11

∂x1
�x1�x2 + ∂τ12

∂x2
�x2�x2 (7.22)

The total force acting on the control volume in the x1 direction is

�x1�x2

[
− ∂p

∂x1
+ ∂τ11

∂x1
+ ∂τ12

∂x2

]
(7.23)

As mentioned before, for equilibrium, the net momentum in the x1 direction should be
equal to the total force acting on the control volume in the x1 direction, that is,

�x1�x2

[
∂(ρu2

1)

∂x1
+ ∂(ρu1u2)

∂x2
+ ∂(ρu1)

∂t

]
= �x1�x2

[
− ∂p

∂x1
+ ∂τ11

∂x1
+ ∂τ12

∂x2

]
(7.24)

Simplifying, we obtain

∂(ρu1)

∂t
+ ∂(ρu2

1)

∂x1
+ ∂(ρu1u2)

∂x2
= − ∂p

∂x1
+ ∂τ11

∂x1
+ ∂τ12

∂x2
(7.25)

Note that the external and body forces (buoyancy) are not included in the above force
balance. In the above equations, the deviatoric stresses τij are expressed in terms of the
velocity gradients and dynamic viscosity as

τij = µ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
(7.26)
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where δij is the Kroneker delta, which is equal to unity if i = j and equal to zero if i �= j .
From the previous expression, τ11 is expressed as

τ11 = µ

(
∂u1

∂x1
+ ∂u1

∂x1
− 2

3

∂u1

∂x1
− 2

3

∂u2

∂x2

)
(7.27)

Note that i = j = 1 in the above equation and k = 1, 2 for a two-dimensional flow.
The above equation may be simplified as follows:

τ11 = µ

(
4

3

∂u1

∂x1
− 2

3

∂u2

∂x2

)
(7.28)

Similarly, τ12 is

τ12 = µ

(
∂u1

∂x2
+ ∂u2

∂x1

)
(7.29)

Substituting Equations 7.28 and 7.29 into Equation 7.25, we obtain the x1 component
of the momentum equation as

∂(ρu1)

∂t
+ ∂(ρu2

1)

∂x1
+ ∂(ρu1u2)

∂x2
=

− ∂p

∂x1
+ ∂

∂x

[
µ

(
4

3

∂u1

∂x1
− 2

3

∂u2

∂x2

)]

+ ∂

∂x2

[
µ

(
∂u2

∂x1
+ ∂u1

∂x2

)]
(7.30)

The momentum component in the x2 direction can be derived by the following steps,
which are similar to the derivation of the x1 component of the momentum equation. The
x2 momentum equation is

∂(ρu2)

∂t
+ ∂(ρu1u2)

∂x1
+ ∂(ρu2

2)

∂x2
=

− ∂p

∂x2
+ ∂

∂x1

[
µ

(
∂u1

∂x2
+ ∂u2

∂x1

)]

+ ∂

∂x2

[
µ

(
4

3

∂u2

∂x2
− 2

3

∂u1

∂x1

)]
(7.31)

For a constant density flow (incompressible flow), the momentum equations can be fur-
ther reduced by taking the density term out of the differential signs. In addition, substitution
of the conservation of mass equation (Equation 7.11) into the momentum equation leads to
a further simplification of the momentum equation. After simplification (see Appendix D
for the detailed derivation), the momentum equations are

ρ

(
∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2

)
= − ∂p

∂x1
+ µ

[
∂2u1

∂x2
1

+ ∂2u1

∂x2
2

]
(7.32)
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in the x1 direction and

ρ

(
∂u2

∂t
+ u1

∂u2

∂x1
+ u2

∂u2

∂x2

)
= − ∂p

∂x2
+ µ

[
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

]
(7.33)

in the x2 direction. In vector notation, the momentum equations can be written as

ρ

[
∂u
∂t

+ ∇.(u × u)

]
= ∇.[−pI + τ ] (7.34)

or, in indicial form

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi

+ µ

(
∂2ui

∂x2
i

)
(7.35)

Note that the above equation is applicable in any dimension.

7.2.3 Energy equation

The energy equation can be derived by following a procedure similar to the momen-
tum equation derivation. However, the difference here is that the temperature, or energy
equation, is a scalar equation. In order to derive this equation, let us consider the control
volume as shown in Figure 7.6. The energy convected into the control volume in the x1

direction is

ρcpu1T �x2 (7.36)

Similarly, the energy convected into the control volume in the x2 direction is

ρcpu2T �x1 (7.37)

rcpu2T + ∆x2 ∂x2

∂[rcpu2T ]

q2 + ∆x2
∂q2

∂x2

q1 + ∆x1

∆x1

∆x2

∂q1

∂x1

ru1T + ∆x1
∂[rcpu1T]

∂x1

q1

q2

rcpu2T

rcpu1T

+ ....

+ ....

+ ....

+ ....

Figure 7.6 Infinitesimal control volume in a flow field. Derivation of conservation of
energy
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As before, a Taylor series expansion may be used to express the energy convected out
of the control volume in both the x1 and x2 directions as

ρcpu1T �x2 + ρcp

∂(u1T )

∂x1
�x1�x2 (7.38)

and

ρcpu2T �x1 + ρcp

∂(u2T )

∂x2
�x2�x1 (7.39)

Note that the specific heat, cp, and density, ρ, are assumed to be constants in deriving
the above equation. The heat diffusion into and out of the control volume is also derived
using the above approach. The heat diffusing into the domain in the x1 direction (Fourier’s
law of heat conduction) is

�x2q1 = −kx1

∂T

∂x1
�x2 (7.40)

and the diffusion entering the control volume in the x2 direction is

�x1q2 = −kx2

∂T

∂x2
�x1 (7.41)

Using a Taylor series expansion, the heat diffusing out of the control volume can be
written as

−kx1

∂T

∂x1
�x2 + ∂

∂x1

(
−kx1

∂T

∂x1

)
�x2�x1 (7.42)

in the x1 direction and

−kx2

∂T

∂x2
�x1 + ∂

∂x2

(
−kx2

∂T

∂x2

)
�x1�x2 (7.43)

in the x2 direction. Finally, the rate of change of energy within the control volume is

�x1�x2ρcp

∂T

∂t
(7.44)

Now, it is a simple matter of balancing the energy entering and exiting the control
volume. The energy balance can be obtained as

‘heat entering the control volume by convection + heat entering
the control volume by diffusion = heat exiting the control volume
by convection + heat exiting the control volume by diffusion +
rate of change of energy within the control volume’.

Following the above heat balance approach and rearranging, we get

∂T

∂t
+ ∂(u1T )

∂x1
+ ∂(u2T )

∂x2
= 1

ρcp

[
∂

∂x1

(
kx1

∂T

∂x1

)
+ ∂

∂x2

(
kx2

∂T2

∂x2

)]
(7.45)
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Differentiating the convection terms by parts and substituting Equation 7.11 (continuity)
into Equation 7.45, we obtain the simplified energy equation in two dimensions as

∂T

∂t
+ u1

∂T

∂x1
+ u2

∂T

∂x2
= 1

ρcp

[
∂

∂x1

(
kx1

∂T

∂x1

)
+ ∂

∂x2

(
kx2

∂T

∂x2

)]
(7.46)

If the thermal conductivity is assumed to be constant and k = kx1 = kx2 , the energy
equation is reduced to

∂T

∂t
+ u1

∂T

∂x1
+ u2

∂T

∂x2
= α

(
∂2T

∂x2
1

+ ∂2T

∂x2
2

)
(7.47)

where α = k/ρcp is called the thermal diffusivity. The energy equation in vector form is

∂T

∂t
+ u.∇T = α∇2T (7.48)

and in indicial form

∂T

∂t
+ ui

∂T

∂xi

= α
∂2T

∂x2
i

(7.49)

The above equation is applicable in any space dimension.

7.3 Non-dimensional Form of the Governing Equations

In the previous section, we discussed the derivation of the Navier–Stokes equations for
an incompressible fluid. In many heat transfer applications, it is often easy to generate
data by non-dimensionalizing the equations using appropriate non-dimensional scales. To
demonstrate the non-dimensional form of the governing equations, let us consider the
following two-dimensional incompressible flow equations in dimensional form:

Continuity equation

∂u1

∂x1
+ ∂u2

∂x2
= 0 (7.50)

x1 momentum equation

∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
= − 1

ρ

∂p

∂x1
+ ν

(
∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)
(7.51)

x2 momentum equation

∂u2

∂t
+ u1

∂u2

∂x1
+ u2

∂u2

∂x2
= − 1

ρ

∂p

∂x2
+ ν

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)
(7.52)
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Energy equation
∂T

∂t
+ u1

∂T

∂x1
+ u2

∂T

∂x2
= α

(
∂2T

∂x2
1

+ ∂2T

∂x2
2

)
(7.53)

where ν = µ/ρ is the kinematic viscosity. To obtain a set of non-dimensional equations,
let us consider three different cases of convective heat transfer. We start with the forced
convection problem followed by the ‘natural’ and ‘mixed’ convection problems. For each
case, we discuss one set of non-dimensional scales. There are several other ways of scaling
the equations. Some of these are discussed in the latter part of the chapter and others can
be found in various other publications listed at the end of this chapter.

7.3.1 Forced convection

In forced convection problems, the following non-dimensional scales are normally employed:

x∗
1 = x1

L
; x∗

2 = x2

L
; t∗ = tua

L
;

u∗
1 = u1

ua
; u∗

2 = u2

ua
; p∗ = p

ρu2
a
;

T ∗ = T − Ta

Tw − Ta
(7.54)

Where ∗ indicates a non-dimensional quantity, L is a characteristic dimension, the
subscript a indicates a constant reference value and Tw is a constant reference temperature,
for example, wall temperature. The density ρ and viscosity µ of the fluid are assumed to
be constant everywhere and equal to the inlet value.

Substitution of the above scales into the dimensional Equations 7.50 to 7.53 leads to
the following non-dimensional form of the equations:

Continuity equation

∂u∗
1

∂x∗
1

+ ∂u∗
2

∂x∗
2

= 0 (7.55)

x1 momentum equation

∂u∗
1

∂t∗
+ u∗

1
∂u∗

1

∂x∗
1

+ u∗
2
∂u∗

1

∂x∗
2

= −∂p∗

∂x∗
1

+ 1

Re

(
∂2u∗

1

∂x∗2
1

+ ∂2u∗
1

∂x∗2
2

)
(7.56)

x2 momentum equation

∂u∗
2

∂t∗
+ u∗

1
∂u∗

2

∂x∗
1

+ u∗
2
∂u∗

2

∂x∗
2

= −∂p∗

∂x∗
2

+ 1

Re

(
∂2u∗

2

∂x∗2
1

+ ∂2u∗
2

∂x∗2
2

)
(7.57)

Energy equation

∂T ∗

∂t∗
+ u∗

1
∂T ∗

∂x∗
1

+ u∗
2
∂T ∗

∂x∗
2

= 1

ReP r

(
∂2T ∗

∂x∗2
1

+ ∂2T ∗

∂x∗2
2

)
(7.58)
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Where Re is the Reynolds number defined as

Re = uaL

ν
(7.59)

and Pr is the Prandtl number given as

Pr = ν

α
(7.60)

Once again, note that the density, kinematic viscosity and thermal conductivity are
assumed to be constant in deriving the above non-dimensional equations. Appropriate
changes will be necessary if an appreciable variation in these quantities occurs in a flow
field. Another non-dimensional number, which is often employed in forced convection
heat transfer calculations is the Peclet number and is given as Pe = ReP r = uaL/α. For
buoyancy-driven natural convection problems, a different type of non-dimensional scale
is necessary if there are no reference velocity values available. The following subsection
gives the natural convection scales:

7.3.2 Natural convection (Buoyancy-driven convection)

Natural convection is generated by the density difference induced by the temperature differ-
ences within a fluid system. Because of the small density variations present in these types
of flows, a general incompressible flow approximation is adopted. In most buoyancy-driven
convection problems, flow is generated by either a temperature variation or a concentration
variation in the fluid system, which leads to local density differences. Therefore, in such
flows, a body force term needs to be added to the momentum equations to include the effect
of local density differences. For temperature-driven flows, the Boussinesq approximation
is often employed, that is,

g(ρ − ρa) = gβ(T − Ta) (7.61)

where g is the acceleration due to gravity (9.81 m/s2) and β is the coefficient of thermal
expansion. The above body force term is added to the momentum equation in the gravity
direction. In a normal situation (refer to Figure 7.7), the body force is added to the x2

momentum (if the gravity direction is negative x2), that is,

∂u2

∂t
+ u1

∂u2

∂x1
+ u2

∂u2

∂x2
= − 1

ρ

∂p

∂x2
+ ν

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)
+ gβ(T − T∞) (7.62)

In practice, the following non-dimensional scales are adopted for natural convection in
the absence of a reference velocity value:

x∗
1 = x1

L
; x∗

2 = x2

L
; t∗ = tα

L2
;

u∗
1 = u1L

α
; u∗

2 = u2L

α
; p∗ = pL2

ρα2
;

T ∗ = T − Ta

Tw − Ta
(7.63)
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Hot, vertical plate

x2

x1

g

Fluid circulation

Figure 7.7 Natural convective flow near a hot, vertical plate

On introducing the above non-dimensional scales into the governing equations, we
obtain the non-dimensional form of the equations as follows:

Continuity equation

∂u∗
1

∂x∗
1

+ ∂u∗
2

∂x∗
2

= 0 (7.64)

x1 momentum equation

∂u∗
1

∂t∗
+ u∗

1
∂u∗

1

∂x∗
1

+ u∗
2
∂u∗

1

∂x∗
2

= −∂p∗

∂x∗
1

+ Pr

(
∂2u∗

1

∂x∗2
1

+ ∂2u∗
1

∂x∗2
2

)
(7.65)

x2 momentum equation

∂u∗
2

∂t∗
+ u∗

1
∂u∗

2

∂x∗
1

+ u∗
2
∂u∗

2

∂x∗
2

= −∂p∗

∂x∗
2

+ Pr

(
∂2u∗

2

∂x∗2
1

+ ∂2u∗
2

∂x∗2
2

)
+ GrP r2T ∗ (7.66)

Energy equation

∂T ∗

∂t∗
+ u∗

1
∂T ∗

∂x∗
1

+ u∗
2
∂T ∗

∂x∗
2

=
(

∂2T ∗

∂x∗2
1

+ ∂2T ∗

∂x∗2
2

)
(7.67)
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Where Gr is the Grashof number given as

Gr = gβ�T L3

ν2
(7.68)

Often, another non-dimensional number called the Rayleigh number is used in the
calculations. This is given as

Ra = GrP r = gβ�T L3

να
(7.69)

On comparing the non-dimensional equations of natural and forced convection, it is
easy to identify the differences. If we substitute 1/P r in place of the Reynolds number
for the forced convection equations, we revert to a natural convection scaling. Obviously,
the extra buoyancy term needs to be added to appropriate component(s) of the momentum
equation for natural convection flows.

7.3.3 Mixed convection

Mixed convection involves features from both forced and natural flow conditions. The
buoyancy effects become comparable to the forced flow effects at small and moderate
Reynolds numbers. Since the flow is partly forced, a reference velocity value is normally
known (Example: velocity at the inlet of a channel). Therefore, non-dimensional scales
of forced convection can be adopted here. However, in mixed convection problems, the
buoyancy term needs to be added to the appropriate component of the momentum equation.
If we replace 1/P r with Re in the non-dimensional natural convection equations of the
previous subsection, we obtain the non-dimensional equations for mixed convection flows.
These equations are the same as for the forced convection flow problem except for the
body force term, which will be added to the momentum equation in the gravity direction.
The body force term is

Gr

Re2
T ∗ (7.70)

Note that sometimes a non-dimensional parameter referred to as the Richardson number
(Gr/Re2) is also used in the literature.

7.4 The Transient Convection–diffusion Problem

An understanding of the fundamentals of the convection–diffusion equations is crucial in
studying fluid-dynamics-assisted heat transfer. The equations governing the combined fluid
flow and heat transfer mainly involve the convection and diffusion components. A typical
scalar convection–diffusion equation may be written as

∂φ

∂t
+ ui

∂φ

∂xi

+ φ
∂ui

∂xi

− ∂

∂xi

(
k

∂φ

∂xi

)
+ Q = 0 (7.71)
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where φ is a scalar variable, k is a diffusion coefficient (thermal conductivity if φ = T ),
ui are the convection velocity components and Q is a source term. In the above equation,
the first term is a transient term, the second and third terms are convection terms and the
fourth term is the diffusion term. For a one-dimensional problem, the above equation is
reduced to

∂φ

∂t
+ u1

∂φ

∂x1
+ φ

∂u1

∂x1
− ∂

∂x1

(
k

∂φ

∂x1

)
+ Q = 0 (7.72)

If the convection velocity u1 is assumed to be constant, we can rewrite Equation 7.72
as follows:

∂φ

∂t
+ u1

∂φ

∂x1
− ∂

∂x1

(
k

∂φ

∂x1

)
+ Q = 0 (7.73)

A one-dimensional convection equation without a source term is obtained by neglecting
the diffusion and source terms as follows:

∂φ

∂t
+ u1

∂φ

∂x1
= 0 (7.74)

Note that an appropriate solution for the above equation is valid for any similar equations
such as the energy equation.

7.4.1 Finite element solution to convection–diffusion equation

Unlike the conduction equation, a numerical solution for the convection equation has to
deal with the convection part of the governing equation in addition to diffusion. For most
conduction equations, the finite element solution is straightforward, as discussed in the
previous chapters. However, if a similar Galerkin type approximation was used in the
solution of convection equations, the results will be marked with spurious oscillations in
space (see the example discussed later in this section) if certain parameters exceed a critical
value (element Peclet number). This problem is not unique to finite elements as all other
spatial discretization techniques have the same difficulties. In a finite difference formulation,
the spatial oscillations are reduced, or suppressed, by a family of discretization methods
called upwinding schemes (Fletcher 1988; Spalding 1972). In the finite element method,
procedures such as Petrov–Galerkin (Zienkiewicz and Taylor 2000) and Streamline Upwind
Petrov Galerkin (SUPG) (Brooks and Hughes 1982) are equivalent upwinding schemes with
the specific purpose of eliminating spatial oscillations. In these methods, the basic shape
function is modified to obtain the upwinding effect.

For time-dependent equations, however, a different kind of approach is followed. The
finite difference Lax–Wendroff (Hirsch 1989) scheme has an equivalent in the finite element
method, which is referred to as the Taylor–Galerkin (TG) scheme (Donea 1984). Another
similar method, which is widely used, is known as the Characteristic Galerkin (CG) scheme
(Zienkiewicz and Taylor 2000). For scalar variables, the CG and TG methods are identical
(Löhner et al. 1984). In this book, we follow the Characteristic Galerkin (CG) approach
to deal with spatial oscillations due to the discretization of the convection transport terms.
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Figure 7.8 Characteristic in a space–time domain

In order to demonstrate the CG method, let us reconsider the simple convection–diffusion
equation in one dimension, namely,

∂φ

∂t
+ u1

∂φ

∂x1
− ∂

∂x1

(
k

∂φ

∂x1

)
= 0 (7.75)

Let us consider a characteristic of the flow as shown in Figure 7.8 in the time–space
domain. The incremental time period covered by the flow is �t from the nth time level to
the n + 1th time level and the incremental distance covered during this time period is �x1,
that is, from (x1 − �x1) to x1. If a moving coordinate is assumed along the path of the
characteristic wave with a speed of u1, the convection terms of Equation 7.75 disappear (as
in a Lagrangian fluid dynamics approach). Although this approach eliminates the convection
term responsible for spatial oscillation when discretized in space, the complication of a
moving coordinate system x′

1 is introduced, that is, Equation 7.75 becomes

∂φ

∂t
(x′

1, t) − ∂

∂x′
1

(
k

∂φ

∂x′
1

)
= 0 (7.76)

The semi-discrete form of the above equation can be written as

φn+1|x1 − φn|x1−�x1

�t
− ∂

∂x′
1

(
k

∂φ

∂x′
1

)n

|x1−�x1 = 0 (7.77)

Note that the diffusion term is treated explicitly (a definition of explicit schemes has
been given in Chapter 6 and later on in this chapter). It is possible to solve the above
equation by adapting a moving coordinate strategy. However, a simple spatial Taylor series
expansion in space avoids such a moving coordinate approach. With reference to Figure 7.8,



190 CONVECTION HEAT TRANSFER

we can write using a Taylor series expansion as follows:

φn|x1−�x1 = φn|x1 − ∂φ

∂x1

n �x1

1!
+ ∂2φ

∂x2
1

�x2
1

2!
− · · · (7.78)

Similarly, the diffusion term is expanded as

∂

∂x′
1

(
k

∂φ

∂x′
1

)n

|x1−�x1 = ∂

∂x1

(
k

∂φ

∂x1

)n

|x1 − ∂

∂x1

[
∂

∂x1

(
k

∂φ

∂x1

)n]
�x (7.79)

On substituting Equations 7.78 and 7.79 into Equation 7.77, we obtain (higher-order
terms being neglected) the following expression:

φn+1 − φn

�t
= −�x

�t

∂φ

∂x1

n

+ �x2

2�t

∂2φ

∂x2
1

n

+ ∂

∂x1

(
k

∂φ

∂x1

)n

(7.80)

In this case, all the terms are evaluated at the position x1, and not at two positions as
in Equation 7.77. If the flow velocity is u1, we can write �x = u1�t . Substituting into
Equation 7.80, we obtain the semi-discrete form as

φn+1 − φn

�t
= −u1

∂φ

∂x1

n

+ u2
1
�t

2

∂2φ

∂x2
1

n

+ ∂

∂x1

(
k

∂φ

∂x1

)n

(7.81)

By carrying out a Taylor series expansion (see Figure 7.8), the convection term reap-
pears in the equation along with an additional second-order term. This second-order term
acts as a smoothing operator that reduces the oscillations arising from the spatial discretiza-
tion of the convection terms. The equation is now ready for spatial approximation.

The following linear spatial approximation of the scalar variable φ in space is used to
approximate Equation 7.81:

φ = Niφi + Njφj = [N]{φ} (7.82)

where [N] are the shape functions and subscripts i and j indicate the nodes of a linear
element as shown in Figure 7.9. On employing the Galerkin weighting to Equation 7.81,
we obtain ∫




[N]T φn+1 − φn

�t
d
 +

∫



[N]T
(

u1
∂φ

∂x1

)n

d


− �t

2

∫



[N]T

(
u2

1
∂2φ

∂x2
1

)n

d


−
∫




[N]T ∂

∂x1

(
k

∂φ

∂x1

)
d
 = 0 (7.83)
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Figure 7.9 One-dimensional linear element
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The above equation is equal to zero only if all the element contributions are assembled.
For a domain with only one element, we can substitute

[N]T =
[
Ni

Nj

]
(7.84)

On substituting a linear spatial approximation for the variable φ, over elements as
typified in Figure 7.9, into Equation 7.83, we get∫




[N]T[N]
{φn+1 − φn}

�t
d
 = −u1

∫



[N]T ∂

∂x1
([N]{φ})n d


+ �t

2
u2

1

∫



[N]T
∂2

∂x2
1

([N]{φ})n d


+
∫




[N]T
∂2

∂x2
1

([N]{φ})n d
 (7.85)

Before utilizing the linear integration formulae, we apply Green’s lemma to some of
the integrals in the above equation. Green’s lemma is given as follows:∫




α
∂β

∂x1
d
 = −

∫



∂α

∂x1
β d
 +

∫
	

αβn1 d	

∫



α
∂β

∂x2
d
 = −

∫



∂α

∂x2
β d
 +

∫
	

αβn2 d	 (7.86)

where n1 and n2 are the direction cosines of the outward normal n, 
 is the domain and
	 is the domain boundary. The second-order derivatives can also be similarly expressed
(see Appendix A). Applying Green’s lemma to the second-order terms of Equation 7.85,
we obtain ∫




[N]T [N]
{φn+1} − {φn}

�t
d
 = −u1

∫



[N]T
∂

∂x1
([N]{φ})n d


− �t

2
u2

1

∫



∂[N]T

∂x1

∂[N]

∂x1
{φ} d


+ �t

2
u2

1

∫
	

[N]T
∂[N]

∂x1
{φ}n1 d	

−
∫




∂[N]T

∂x1
k
∂[N]

∂x1
{φ} d


+
∫

	

[N]T k
∂[N]

∂x1
{φ}n1 d	 (7.87)

The first-order convection term can be integrated either directly or via Green’s lemma. In
this section, the convection term is integrated directly without applying Green’s lemma. How-
ever, integration of the first derivatives by parts is useful for the solution of Navier–Stokes
equations, as demonstrated in Section 7.6. It is now possible to apply a shortcut for the
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integration using the following formula:∫



Na
i Nb

j d
 = a!b!l

(a + b + 1)!
(7.88)

and therefore derive the element matrices for all the terms in Equation 7.87. The term on
the left-hand side for a single element is

∫



[N]T [N]
{φn+1} − {φn}

�t
d
 =

∫



[
Ni

Nj

] [
Ni Nj

]



φn+1
i − φn

i

�t

φn+1
j − φn

j

�t


 d


=
∫




[
N2

i NiNj

NjNi N2
j

]


φn+1
i − φn

i

�t

φn+1
j − φn

j

�t


 d


= l

6

[
2 1
1 2

]


φn+1
i − φn

i

�t

φn+1
j − φn

j

�t




= [Me]
�{φ}
�t

(7.89)

where [Me] is the mass matrix. For a single element, the mass matrix is given as

[Me] = l

6

[
2 1
1 2

]
(7.90)

The above mass matrix for a single element will have to be utilized in an assembly
procedure for a fluid domain containing many elements. In Equation 7.89

�{φ}
�t

=




φn+1
i − φn

i

�t

φn+1
j − φn

j

�t


 (7.91)

In a similar fashion, all other terms can be integrated; for example, the convection term
is given by

u1

∫



[N]T
∂[N]

∂x1
{φ}n d
 = u1

∫



[
Ni

Nj

] [
∂Ni

∂x1

∂Nj

∂x1

]{
φi

φj

}n

d


= u1




l

2

∂Ni

∂x1

l

2

∂Nj

∂x1
l

2

∂Ni

∂x1

l

2

∂Nj

∂x1



{

φi

φj

}n

= u1

2

[−1 1
−1 1

]{
φi

φj

}n

= [Ce]{φ}n (7.92)
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where [Ce] is the elemental convection matrix, that is,

[Ce] = u1

2

[−1 1
−1 1

]
(7.93)

The values of the derivatives of the shape functions are substituted in order to derive
the above matrix. The diffusion term within the domain 
 is integrated as

∫



∂[N]T

∂x1
k
∂[N]

∂x1
d
{φ}n =

∫






∂Ni

∂x1

∂Nj

∂x1


 k

[
∂Ni

∂x1

∂Nj

∂x1

]{
φi

φj

}n

d


=
∫




k




∂Ni

∂x1

∂Ni

∂x1

∂Ni

∂x1

∂Nj

∂x1

∂Nj

∂x1

∂Ni

∂x1

∂Nj

∂x1

∂Nj

∂x1



{

φi

φj

}n

d


= k

l

[
1 −1

−1 1

]{
φi

φj

}n

= [K1e]{φ}n (7.94)

where [K1e] is the elemental diffusion matrix, that is,

[K1e] = k

l

[
1 −1

−1 1

]
(7.95)

The characteristic Galerkin term within the domain 
 is integrated as

u2
1
�t

2

∫



∂[N]T

∂x1

∂[N]

∂x1
{φ}n d
 = u2

1
�t

2

∫






∂Ni

∂x1

∂Nj

∂x1



[

∂Ni

∂x1

∂Nj

∂x1

]{
φi

φj

}n

d


= u2
1
�t

2

∫






∂Ni

∂x1

∂Ni

∂x1

∂Ni

∂x1

∂Nj

∂x1

∂Nj

∂x1

∂Ni

∂x1

∂Nj

∂x1

∂Nj

∂x1



{

φi

φj

}
d


= u2
1
�t

2

1

l

[
1 −1

−1 1

]{
φi

φj

}n

= [K2e]{φ}n (7.96)

where [K2e] is a stabilization matrix,

[K2e] = u2
1
�t

2

1

l

[
1 −1

−1 1

]
(7.97)
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The boundary term from the diffusion operator is integrated by assuming that i is a
boundary node, as follows:∫

	

[N]T k
∂[N]

∂x1
{φ}n d	 =

∫
	

[
Ni

0

]
k

[
∂Ni

∂x1

∂Nj

∂x1

]{
φi

φj

}n

d	

=
∫

	

k


Ni

∂Ni

∂x1
Ni

∂Nj

∂x1
0 0


{φi

φj

}n

d	

= k


−1

l

1

l

0 0


{φi

φj

}n

= {f1e} (7.98)

where {f1e} is the forcing vector due to the diffusion term, that is,

{f1e} = k


−φi

l
+φj

l
0




n

(7.99)

The boundary integral from the characteristic Galerkin term is integrated, again by
assuming that i is a boundary node, as∫

	

u2
1
�t

2
[N]T

∂[N]

∂x1
{φ}n d	 = u2

1
�t

2

∫
	

[
Ni

0

] [
∂Ni

∂x1

∂Nj

∂x1

]{
φi

φj

}n

d	

= u2
1
�t

2

∫
	


Ni

∂Ni

∂x1
Ni

∂Nj

∂x1
0 0


{φi

φj

}n

d	

= u2
1
�t

2


−1

l

1

l

0 0


{φi

φj

}n

= {f2e} (7.100)

where {f2e} is the forcing vector due to the stabilization term

{f2e} = u2
1
�t

2


−φi

l
+φj

l
0




n

(7.101)

The forcing vectors are formulated by assuming that the node i is a boundary node.
Because of the opposite signs of the outward normals at the interface between any two
elements within the domain, these forcing vector terms vanish for all nodes other than the
boundary nodes. The remaining terms will have a value only at the domain boundaries. Also,
the boundary terms due to the CG stabilizing operator (Equation 7.101) can be neglected
during the calculations without any loss in accuracy.
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Figure 7.10 One-dimensional convection–diffusion problems

For a one-dimensional domain with more than one element, all the matrices and vectors
need to be assembled in order to obtain the global matrices. Once assembled, the discretized
one-dimensional equation becomes

[M]
�{φ}
�t

= −[C]{φ}n − [K1]{φ}n − [K2]{φ}n + {f1}n + {f2}n (7.102)

Let us now consider a simple one-dimensional convection problem, as given in Figure 7.10,
to demonstrate the effect of a discretization with and without the CG scheme.

The scalar variable value at the inlet is φ = 0, and at the exit its value is 1.0. This
scalar variable is transported in the direction of the velocity as shown in Figure 7.10. Note
that the convection velocity u1 is constant. The element Peclet number for this problem is
defined as

Pe = u1h

2k
(7.103)

where h is the element size in the flow direction, which, in one dimension is the local
element length. Figure 7.11 shows the comparison between a solution with the CG dis-
cretization scheme and one without it. Only two Peclet numbers are shown in these
diagrams to demonstrate the spatial oscillations without the CG discretization. As seen,
both discretizations give no spatial oscillations at a Pe value of unity. However, at a Pe

value of 1.5, the CG discretization is accurate and stable, while the discretization without
the CG term becomes oscillatory. The exact solution to this problem is given as follows
(Brooks and Hughes 1982):

φ = 1 − e
u1x1

k

1 − e
u1L

k

(7.104)

In this equation, L is the total length of the domain and x1 is the local length of the
domain.

7.4.2 Extension to multi-dimensions

The extension of the characteristic Galerkin scheme to a multi-dimensional scalar con-
vection-diffusion equation is straightforward and follows the previous procedure as dis-
cussed for a one-dimensional case. The two-dimensional convection–diffusion equation
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Figure 7.11 Spatial variation of a function, φ, in one-dimensional space for different
element Peclet numbers

without the source term is

∂φ

∂t
+ u1

∂φ

∂x1
+ u2

∂φ

∂x2
= ∂

∂x1

(
k

∂φ

∂x1

)
+ ∂

∂x1

(
k

∂φ

∂x2

)
(7.105)

The convection velocity components u1 and u2 are assumed to be constant in deriving
this equation. Applying the characteristic Galerkin procedure to the above equation, we
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obtain
φn+1 − φn

�t
= −u1

∂φ

∂x1

n

− u2
∂φ

∂x2

n

+ ∂

∂x1

(
k

∂φ

∂x1

)n

+ ∂

∂x1

(
k

∂φ

∂x2

)n

+ u1
�t

2

∂

∂x1

[
u1

∂φ

∂x1
+ u2

∂φ

∂x2

]n

+ u2
�t

2

∂

∂x2

[
u1

∂φ

∂x1
+ u2

∂φ

∂x2

]n

(7.106)

The standard Galerkin approximation can now be employed for solving the above
equation. Assuming a linear variation of φ within an element as indicated in Figure 7.12,
we can express the variation of φ as

φ = Niφ1 + Njφj + Nkφk = [N]{φ} (7.107)

Employing the Galerkin weighting, we obtain∫



[N]T
φn+1 − φn

�t
d
 = −

∫



[N]T u1
∂φ

∂x1

n

d
 −
∫




[N]T u2
∂φ

∂x2

n

d


+
∫




[N]T
∂

∂x1

(
k

∂φ

∂x1

)n

d


+
∫




[N]T
∂

∂x2

(
∂φ

∂x2

)n

d


+ �t

2
u1

∫



[N]T
∂

∂x1

[
u1

∂φ

∂x1
+ u2

∂φ

∂x2

]n

d


+ �t

2
u2

∫



[N]T
∂

∂x2

[
u1

∂φ

∂x1
+ u2

∂φ

∂x2

]n

d
 (7.108)
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i

Figure 7.12 Two-dimensional linear triangular element
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The above equation is valid globally. On substituting the global spatial approximation
for the scalar variable φ into the above equation, we obtain∫




[N]T [N]
{φ}n+1 − {φ}n

�t
d
 = −u1

∫



[N]T
∂[N]

∂x1
{φ}n d
 − u2

∫



[N]T
∂[N]

∂x2
{φ}n d


+
∫




[N]T
∂

∂x1

(
k
∂[N]

∂x1

)
{φ}n d


+
∫




[N]T
∂

∂x2

(
k
∂[N]

∂x2

)
{φ}n d


+ �t

2
u1

∫



[
∂

∂x1

(
u1

∂[N]

∂x1
{φ}n + u2

∂[N]

∂x2
{φ}n

)]
d


+ �t

2
u2

∫



[
∂

∂x2

(
u1

∂[N]

∂x1
{φ}n + u2

∂[N]

∂x2
{φ }n

)]
d


(7.109)

The above equation is valid only if all the element contributions in a finite element
domain are assembled. The elemental matrices are derived by applying the following for-
mula for integration over linear triangular elements:∫




Na
i Nb

j Nc
k d
 = a!b!c!2A

(a + b + c + 2)!
(7.110)

and for the line integral ∫
	

Na
i Nb

i Nc
k d	 = a!b!c!	

(a + b + c + 1)!
(7.111)

where A is the area of a triangular element and 	 is the length of a boundary edge. Applying
the above formulae, we obtain the element characteristic equations as follows:

The mass matrix is

[Me] =
∫




[N]T [N] d
 = A

12


2 1 1

1 2 1
1 1 2


 (7.112)

The convection matrix is

[Ce] =
∫




[N]T
(

u1
∂[N]

∂x1
+ u2

∂[N]

∂x2

)
d


= u1

6


bi bj bk

bi bj bk

bi bj bk


+ u2

6


ci cj ck

ci cj ck

ci cj ck


 (7.113)

where

bi = yj − yk; ci = xk − xj

bj = yk − yi; cj = xi − xk

bk = yi − yj ; ck = xj − xi (7.114)
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As before, the diffusion term can be integrated after applying Green’s lemma. The
diffusion matrix for the elements inside the domain is

[K1e] =
∫




(
∂[N]T

∂x1
k
∂[N]

∂x1
+ ∂[N]T

∂x2
k
∂[N]

∂x2

)
d


= k

4A


 b2

i bibj bibk

bjbi b2
j bj bk

bkbi bkbj b2
k


+ k

4A


 c2

i cicj cick

cj ci c2
j cj ck

ckci ckcj c2
k


 (7.115)

The stabilization matrix is

[K2e] = u1
�t

2

[∫



u1
∂[N]T

∂x1

∂[N]

∂x1
d
 +

∫



u2
∂[N]T

∂x1

∂[N]

∂x2
d


]

+ u2
�t

2

[∫



u1
∂[N]T

∂x2

∂[N]

∂x1
d
 +

∫



u2
∂[N]T

∂x2

∂[N]

∂x2
d


]

= u1

4A

�t

2


 u1b

2
i + u2bici u1bibj + u2bicj u1bibk + u2bick

u1bjbi + u2bj ci u1b
2
j + u2bj cj u1bjbk + u2bj ck

u1bkbi + u2bkci u1bkbj + u2bkcj u1b
2
k + u2bkck




+ u2

4A

�t

2


 u1cibi + u2c

2
i u1cibj + u2cicj u1cibk + u2cick

u1cjbi + u2cj ci u1cj bj + u2c
2
j u1cjbk + u2cj ck

u1ckbi + u2ckci u1ckbj + u2ckcj u1ckbk + u2c
3
k


 (7.116)

The forcing vectors along the boundary edges are (assuming ij as the boundary edge)

[f1e] = k

∫
	


Ni

Nj

0


[∂Ni

∂x1

∂Nj

∂x1

∂Nk

∂x1

]
{φ}n d	n1

+ k

∫
	


Ni

Nj

0


[∂Ni

∂x2

∂Nj

∂x2

∂Nk

∂x2

]
{φ} d	n2

= 	

4A
k


biφi + bjφj + bkφk

biφi + bjφj + bkφk

0


 n1

+ 	

4A
k


ciφi + cjφj + ckφk

ciφi + cjφj + ckφk

0


n2 (7.117)

[f2e] = u1
�t

2

∫
	

u1


Ni

Nj

0


[∂Ni

∂x2

∂Nj

∂x2

∂Nk

∂x2

]
{φ}n

+ u1
�t

2

∫
	

u2


Ni

Nj

0


[∂Ni

∂x2

∂Nj

∂x2

∂Nk

∂x2

]
{φ}n d	n1
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+ u2
�t

2

∫
	

u1


Ni

Nj

0


[∂Ni

∂x1

∂Nj

∂x1

∂Nk

∂x1

]
{φ}n d	n2

+ u2
�t

2

∫
	

u2


Ni

Nj

0


[∂Ni

∂x2

∂Nj

∂x2

∂Nk

∂x2

]
{φ}n d	n2

= u1

2A

�t

2

	

2


u1(biφi + bjφj + bkφk) + u2(ciφi + cjφj + ckφk)

u1(biφi + bjφj + bkφk) + u2(ciφ + cjφj + ckφk)

0




n

n1

+ u2

2A

�t

2

	

2


u1(biφi + bjφj + bkφk) + u2(ciφi + cjφj + ckφk)

u1(biφi + bjφj + bkφk) + u2(ciφ + cjφj + ckφk)

0




n

n2

(7.118)

The assembled equation for a two-dimensional analysis takes a form similar to the one-
dimensional Equation 7.102. Once again, the boundary terms from Equation 7.118 may be
neglected in the calculations.

7.5 Stability Conditions

The stability conditions for a given time discretization may be derived using a Von Neu-
mann or Fourier analysis for either the convection- or the convection–diffusion equations.
However, for more complicated equations such as the Navier–Stokes equations, the deriva-
tion of the stability limit is not straightforward. A detailed discussion on stability criteria is
not within the scope of this book and readers are asked to refer to the relevant text books
and papers for details (Hirsch 1989; Zienkiewicz and Codina 1995). A stability analysis
will give some idea about the time-step restrictions of any numerical scheme.

In general, for fluid dynamics problems, the time-step magnitude is controlled by two
wave speeds. The first one is due to the convection velocity and the second to the real
diffusion introduced by the equations. In the case of a convection–diffusion equation, the

convection velocity is
√

uiui , which is
√

u2
1 + u2

2 = |u|. The diffusion velocity is 2k/h

where h is the local element size. The time-step restrictions are calculated as the ratio of
the local element size and the local wave speed. It is therefore correct to write that the
time step is calculated as

�t = min(�tc, �td) (7.119)

where �tc and �td are the convection and diffusion time-step limits respectively, which
are

�tc = h

|u|

�td = h2

2k
(7.120)
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Figure 7.13 Two-dimensional linear triangular element

Often, it may be necessary to multiply the time-step �t by a safety factor due to
different methods of element size calculations. A simple procedure to calculate the element
size in two dimensions is

h = min

(
2Area i

li

)
, i = 1, number of elements connected to the node (7.121)

where Area i are the area of the elements connected to the node and li are the length of
the opposite sides as shown in Figure 7.13. For the node shown in this figure, the local
element size is calculated as

h = min(A1/l1, A2/l2, A3/l3, A4/l4, A5/l5) (7.122)

In three dimensions, the term 2Area i is replaced by 3Volumei and li is replaced by the
area opposite the node in question.

7.6 Characteristic-based Split (CBS) Scheme

It is essential to understand the characteristic Galerkin procedure, discussed in the previous
section for the convection–diffusion equation, in order to apply the concept to solve the real
convection equations. Unlike the convection–diffusion equation, the momentum equation,
which is part of a set of heat convection equations, is a vector equation. A direct extension
of the CG scheme to solve the momentum equation is difficult. In order to apply the
characteristic Galerkin approach to the momentum equations, we have to introduce two
steps. In the first step, the pressure term from the momentum equation will be dropped
and an intermediate velocity field will be calculated. In the second step, the intermediate
velocities will be corrected. This two-step procedure for the treatment of the momentum
equations has two advantages. The first advantage is that without the pressure terms, each
component of the momentum equation is similar to that of a convection–diffusion equation
and the CG procedure can be readily applied. The second advantage is that removing the
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pressure term from the momentum equations enhances the pressure stability and allows
the use of arbitrary interpolation functions for both velocity and pressure. In other words,
the well-known Babuska–Brezzi condition is satisfied. Owing to the split introduced in the
equations, the method is referred to as the Characteristic Based Split (CBS) scheme.

The CG procedure may be applied to the individual momentum components without
removing the pressure term, provided the pressure term is treated as a source term. However,
such a procedure will lose the advantages mentioned in the previous paragraph.

For more mathematical details, readers are directed to earlier publications on the method
(Zienkiewicz and Codina 1995; Zienkiewicz and Taylor 2000) and for recent developments,
references (Nithiarasu 2003; Zienkiewicz et al. 1999) are recommended. In order to apply
the CG procedure, the governing equations in two dimensions (note that body forces are
not included for simplicity) may be written as follows:

Continuity equation

∂u1

∂x1
+ ∂u2

∂x2
= 0 (7.123)

x1 momentum equation

∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
= − 1

ρ

∂p

∂x1
+ ν

(
∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)
(7.124)

x2 momentum equation

∂u2

∂t
+ u1

∂u2

∂x1
+ u2

∂u2

∂x2
= − 1

ρ

∂p

∂x2
+ ν

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)
(7.125)

Energy equation

∂T

∂t
+ u1

∂T

∂x1
+ u2

∂T

∂x2
= α

(
∂2T

∂x2
1

+ ∂2T

∂x2
2

)
(7.126)

From the governing equations, it is obvious that the application of the CG scheme is
not straightforward. However, by implementing the following steps, it is possible to obtain
a solution to the convection heat transfer equation.

Step 1 Intermediate velocity or momentum field: This step is carried out by removing
the pressure terms from Equations 7.124 and 7.125. The intermediate velocity component
equations, in their semi-discrete form, are

intermediate x1 momentum equation

ũ1 − un
1

�t
+ u1

∂u1

∂x1

n

+ u2
∂u1

∂x2

n

= ν

(
∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)n

(7.127)

intermediate x2 momentum equation

ũ2 − un
2

�t
+ u1

∂u2

∂x1

n

+ u2
∂u2

∂x2

n

= ν

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)n

(7.128)
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where ũ1 and ũ2 are the intermediate momentum variables. It is obvious that the CG scheme
can now be applied, as the above equations are very similar to the convection–diffusion
equations of the previous section. If the CG procedure is applied to the above equations, a
semi-discrete from of the equations is obtained, namely,

intermediate x1 momentum equation

ũ1 − u1
n

�t
= −u1

∂u1

∂x1

n

− u2
∂u1

∂x2

n

+ ν

(
∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[
u1

∂u1

∂x1

n

+ u2
∂u1

∂x2

n]

+ u2
�t

2

∂

∂x2

[
u1

∂u1

∂x1

n

+ u2
∂u1

∂x2

n]
(7.129)

intermediate x2 momentum equation

ũ2 − u2
n

�t
= −u1

∂u2

∂x1

n

− u2
∂u2

∂x2

n

+ ν

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[
u1

∂u2

∂x1

n

+ u2
∂u2

∂x2

n]

+ u2
�t

2

∂

∂x2

[
u1

∂u2

∂x1

n

+ u2
∂u2

∂x2

n]
(7.130)

Step 2 Pressure calculation: The pressure field is calculated from a pressure equation of
the Poisson type. The pressure equation is derived from the fact that the intermediate
velocities at the first step need to be corrected. If the pressure terms are not removed from
the momentum equations, then the correct velocities are obtained, but with the loss of
some advantages. If the semi-discrete form of the momentum equations are written without
removing the pressure terms, then

semi-discrete x1 momentum equation

u1
n+1 − u1

n

�t
= −u1

∂u1

∂x1

n

− u2
∂u1

∂x2

n

+ ν

(
∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)n

− 1

ρ

∂p

∂x1

n

+ u1
�t

2

∂

∂x1

[
u1

∂u1

∂x1

n

+ u2
∂u1

∂x2

n

+ 1

ρ

∂p

∂x1

n]

+ u2
�t

2

∂

∂x2

[
u1

∂u1

∂x1

n

+ u2
∂u1

∂x2

n

+ 1

ρ

∂p

∂x1

n]
(7.131)
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semi-discrete x2 momentum equation

u2
n+1 − u2

n

�t
= −u1

∂u2

∂x1

n

− u2
∂u2

∂x2

n

+ ν

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)n

− 1

ρ

∂p

∂x2

n

+ u1
�t

2

∂

∂x1

[
u1

∂u2

∂x1

n

+ u2
∂u2

∂x2

n

+ 1

ρ

∂p

∂x2

n]

+ u2
�t

2

∂

∂x2

[
u1

∂u2

∂x1

n

+ u2
∂u2

∂x2

n

+ 1

ρ

∂p

∂x2

n]
(7.132)

The real velocity field may be directly obtained if the above equations are utilized.
Subtracting Equation 7.129 from 7.131 and 7.130 from 7.132 results in the following two
equations:

un+1
1 − ũ1

�t
= − 1

ρ

∂p

∂x1

n

+ u1
�t

2

∂

∂x1

(
1

ρ

∂p

∂x1

)n

+ u2
�t

2

∂

∂x2

(
1

ρ

∂p

∂x1

)n

un+1
2 − ũ2

�t
= − 1

ρ

∂p

∂x2

n

+ u1
�t

2

∂

∂x1

(
1

ρ

∂p

∂x1

)n

+ u2
�t

2

∂

∂x2

(
1

ρ

∂p

∂x2

)n

(7.133)

It is obvious that if the pressure terms can be calculated from another source, the
intermediate velocities of Step 1 can be corrected using Equation 7.133. However, an
independent pressure equation is required in order to substitute the pressure values into
the above equation. In order to do this, un+1

i terms have to be eliminated from the above
equation. This can be done via the continuity equation if we differentiate the first equation
with respect to x1 and the second equation with respect to x2 and adding these together,
that is, (neglecting third-order terms)

∂un+1
1

∂x1
+ ∂un+1

2

∂x2
− ∂ũ1

∂x1
− ∂ũ2

∂x2
= −�t

ρ

(
∂2p

∂x2
1

+ ∂2p

∂x2
2

)n

(7.134)

Note that from the continuity equation

∂un+1
1

∂x1
+ ∂un+1

2

∂x2
= 0 (7.135)

On substituting the above equation into Equation 7.134, we obtain the pressure equation
as follows:

1

ρ

(
∂2p

∂x2
1

+ ∂2p

∂x2
2

)n

= 1

�t

(
∂ũ1

∂x1
+ ∂ũ2

∂x2

)
(7.136)

It should be noted that there are no transient or convection terms present in the above
equation. Although this equation does not require any special treatment in order to stabilize
the oscillations, the absence of a transient term leads to a compulsory implicit treatment
solution procedure. In other words, a matrix solution method is necessary in order to obtain
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a solution for the above equation. However, it is possible to introduce an artificial com-
pressibility formulation to avoid the implicit treatment of pressure. This will be discussed
in a later section.

It has been stated in the literature that, even though the pressure terms in Equation 7.136
need to be treated implicitly, the scheme is really an explicit one. However, in our own
publications, the scheme is referred to as being semi-implicit because the implicit solution
to the pressure equation is used in the second step.

Step 3 Velocity or momentum correction: The velocity correction has already been derived
in the previous step (Equation 7.133). This involves the pressure and intermediate velocity
field, and is written as

un+1
1 − ũ1

�t
= − 1

ρ

∂p

∂x1

n

+ u1
∂

∂x1

(
1

ρ

∂p

∂x1

)n

+ u2
∂

∂x2

(
1

ρ

∂p

∂x1

)n

un+1
2 − ũ2

�t
= − 1

ρ

∂p

∂x2

n

+ u1
∂

∂x1

(
1

ρ

∂p

∂x1

)n

+ u2
∂

∂x2

(
1

ρ

∂p

∂x2

)n

(7.137)

The higher-order terms in the above equations may be neglected as these terms have
very little influence on the velocity correction.

Step 4 Temperature calculation: Applying the CG procedure to the temperature equation,
we get

T n+1 − T n

�t
= −u1

∂T

∂x1

n

− u2
∂T

∂x2

n

+ α

(
∂2T

∂x2
1

+ ∂2T

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[
u1

∂T

∂x1

n

+ u2
∂T

∂x2

n]

+ u2
�t

2

∂

∂x2

[
u1

∂T

∂x1

n

+ u2
∂T

∂x2

n]
(7.138)

All four preceding steps will now be summarized.

Step 1: Intermediate velocity

intermediate x1 momentum equation

ũ1 − ũn
1

�t
= −u1

∂u1

∂x1

n

− u2
∂u1

∂x2

n

+ ν

(
∂2u1

∂x2
1

+ ∂2u1

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[
u1

∂u1

∂x1
+ u2

∂u1

∂x2

]n

+ u2
�t

2

∂

∂x2

[
u1

∂u1

∂x1
+ u2

∂u1

∂x2

]n

(7.139)
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intermediate x2 momentum equation

ũ2 − ũn
2

�t
= −u1

∂u2

∂x1

n

− u2
∂u2

∂x2

n

+ ν

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[
u1

∂u2

∂x1
+ u2

∂u2

∂x2

]n

+ u2
�t

2

∂

∂x2

[
u1

∂u2

∂x1
+ u2

∂u2

∂x2

]n
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Step 2: Pressure calculation

1

ρ

(
∂2p

∂x2
1

+ ∂2p

∂x2
2

)n

= 1

�t

(
∂ũ1

∂x1
+ ∂ũ2

∂x2

)
(7.141)

Step 3: Velocity correction

un+1
1 − ũ1

�t
= − 1

ρ

∂p

∂x1

n

+ u1
�t

2

∂

∂x1

(
1

ρ

∂p

∂x1

)n

+ u2
�t

2

∂

∂x2

(
1

ρ

∂p

∂x1

)n

un+1
2 − ũ2

�t
= − 1

ρ

∂p

∂x2

n

+ u1
�t

2

∂

∂x1

(
1

ρ

∂p

∂x1

)n

+ u2
�t

2

∂

∂x2

(
1

ρ

∂p

∂x2

)n
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Step 4: Temperature calculation

T n+1 − T n

�t
= −u1

∂T

∂x1

n

− u2
∂T

∂x2

n

+ α

(
∂2T

∂x2
1

+ ∂2T

∂x2
2

)n

+ u1
�t

2

∂

∂x1

[
u1

∂T

∂x1
+ u2

∂T

∂x2

]n

+ u2
�t

2

∂

∂x2

[
u1

∂T

∂x1
+ u2

∂T

∂x2

]n
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The temporal discretization of the CBS scheme has now been completed, and the
following subsection gives the spatial discretization procedure.

7.6.1 Spatial discretization

The Galerkin approximation and spatial discretization of the four steps discussed previously
follow the same procedure as given for the convection–diffusion equation in Section 7.4.2.
On assuming linear interpolation functions for all the variables, the spatial variation for a



CONVECTION HEAT TRANSFER 207

linear triangular element may be written as (refer to Figure 7.12)

u1 = Niu1i + Nju1j + Nku1k = [N]{u1}
u2 = Niu2i + Nju2j + Nku2k = [N]{u2}
p = Nipi + Njpj + Nkpk = [N]{p}
T = NiTi + NjTj + NkTk = [N]{T} (7.144)

The elemental convection, diffusion and other matrices are very similar to the one
discussed for the convection–diffusion equation. However, the difference here is that the
convection velocities are not constant. Also, a non-linearity is introduced in the convection
terms of the momentum equation. The following element matrices arise from the CBS
scheme after spatial discretization:

Elemental mass matrix

[Me] = A

12


2 1 1

1 2 1
1 1 2


 (7.145)

Elemental convection matrix

[Ce] = 1

24


(usu + u1i )bi (usu + u1i )bj (usu + u1i )bk

(usu + u1j )bi (usu + u1j )bj (usu + u1j )bk

(usu + u1k)bi (usu + u1k)bj (usu + u1k)bk




+ 1

24


(vsu + u2i )ci (vsu + u2i )cj (vsu + u2i )ck

(vsu + u2j )ci (vsu + u2j )cj (vsu + u2j )ck

(vsu + u2k)ci (vsu + u2k)cj (vsu + u2k)ck


 (7.146)

where
usu = u1i + u1j + u1k

vsu = u2i + u2j + u2k (7.147)

The differences in the above convection matrix from that of the convection matrix
discussed in Section 7.4.2 are due to the variable velocity field. The diffusion matrix is the
same as the convection–diffusion equation, but k is replaced with the kinematic viscosity ν

for the momentum equation. Two diffusion matrices are required for convection heat transfer
problems, one for the momentum equation and another for the temperature equation. These
are

[Kme] = ν

4A


 b2

i bibj bibk

bjbi b2
j bj bk

bkbi bkbj b2
k


+ ν

4A


 c2

i cicj cick

cj ci c2
j cj ck

ckci ckcj c2
k


 (7.148)

for the momentum diffusion and

[Kte] = k

4A


 b2

i bibj bibk

bj bi b2
j bj bk

bkbi bkbj b2
k


+ k

4A


 c2

i cicj cick

cj ci c2
j cj ck

ckci ckcj c2
k


 (7.149)

for the heat diffusion.
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The stabilization matrix is

[Kse] = u1av

12A
usu


 b2

i bibj bibk

bjbi b2
j bj bk

bkbi bkbj b2
k




+ u1av

12A
vsu


bici bicj bick

bj ci bj cj bj ck

bkci bkcj bkck




+ u2av

12A
usu


cibi cibj cibk

cj bi cj bj cj bk

ckbi ckbj ckbk




+ u2av

12A
vsu


 c2

i cicj cick

cj ci c2
j cj ck

ckci ckcj c2
k


 (7.150)

where u1av and u2av are average values of u1 and u2 over an element. The discretization
of the CBS steps requires three more matrices and four forcing vectors to complete the
process. The matrix from the discretized second-order terms for Step 2 is

[K] = 1

4Aρ


 b2

i bibj bibk

bjbi b2
j bj bk

bkbi bkbj b2
k


+ 1

4Aρ


 c2

i cicj cick

cj ci c2
j cj ck

ckci ckcj c2
k


 (7.151)

The first gradient matrix in the x1 direction is

[G1] = 1

6


bi bj bk

bi bj bk

bi bj bk


 (7.152)

and the second gradient matrix in the x2 direction is

[G2] = 1

6


ci cj ck

ci cj ck

ci cj ck


 (7.153)

The forcing terms are the result of the application of Green’s lemma to the second-order
derivatives of the differential equations. This issue has been previously discussed in the
context of the discretization of the convection–diffusion equations. However, one important
change is that it will be assumed that the boundary integral values of the stabilization terms
are equal to zero on the boundaries and will be ignored. This is an appropriate assumption
as these terms will be equal to zero because the residual of the discrete equations are zero
on the boundaries (Zienkiewicz and Taylor 2000). However, the forcing terms resulting
from the discretization of the other second-order terms are important and need to be taken
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into account. The forcing vector of the x1 component of the momentum equation is

{f1} = 	

4A
ν


biu1i + bju1j + bku1k

biu1i + bju1j + bku1k

0




n

n1

+ 	

4A
ν


ciu1i + cju1j + cku1k

ciu1i + cju1j + cku1k

0




n

n2 (7.154)

Note that ij is assumed as being the boundary edge of an element. The forcing vector
of the x1 component of the momentum equation is

[f2] = 	

4A
ν


biu2i + bju2j + bku2k

biu2i + bju2j + bku2k

0




n

n1

+ 	

4A
ν


ciu2i + cju2j + cku2k

ciu2i + cju2j + cku2k

0




n

n2 (7.155)

The forcing vector from the discretization of the second-order pressure terms in Step 2 is

[f3] = 	

4Aρ


bipi + bjpj + bkpk

bipi + bjpj + bkpk

0




n

n1

+ 	

4Aρ


cipi + cjpj + ckpk

cipi + cjpj + ckpk

0




n

n2 (7.156)

The above forcing vector has often been ignored in the past, which is not an unrea-
sonable assumption. Finally, the forcing term due to the discretization of the second-order
terms in the energy equation is

{f4} = 	

4A
k


biTi + bjTj + bkTk

biTi + bjTj + bkTk

0




n

n1

+ 	

4A
k


ciTi + cjTj + ckTk

ciTi + cjTj + ckTk

0




n

n2 (7.157)

The four steps of the CBS scheme may now be written in matrix form. The above
elemental equations need to be assembled before they can be used in the steps. It will be
assumed that the matrices without the subscript e are already assembled and therefore the
steps in terms of the assembly (discrete form) can now be written as
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Step 1: Intermediate velocity calculation x1 component

[M]
�{ũ1}

�t
= −[C]{u1}n − [Km]{u1}n − [Ks ]{u1}n + {f1} (7.158)

and for the x2 component

[M]
�{ũ2}

�t
= −[C]{u2}n − [Km]{u2}n − [Ks ]{u2}n + {f2} (7.159)

Step 2: Pressure calculation

[K]{p}n = − 1

�t

[
[G1]{ũ1} + [G2]{ũ2}

]+ {f3} (7.160)

Step 3: Velocity correction

[M]{u1}n+1 = [M]{ũ1} − �t[G1]{p}n

[M]{u2}n+1 = [M]{ũ2} − �t[G2]{p}n (7.161)

Step 4: Temperature calculation

[M]
�{T}
�t

= −[C]{T}n − [Kt ]{T}n − [Ks ]{T}n + {f4} (7.162)

The above four steps are the cornerstone of the CBS scheme for the solution of the
heat convection equations. An extension of the above steps for solving the conservation
form and three-dimensional equations is straightforward. Interested readers should consult
some of the appropriate publications (Nithiarasu 2003; Zienkiewicz et al. 1999).

The mass matrix [M] used in the above steps may be ‘lumped’ to simplify the solution
procedure. This is an approximation, but a worthwhile and time-saving approximation. Mass
lumping will eliminate the need for the matrix solution procedure necessary for consistent
mass matrices. The lumped mass matrix for a linear triangular element is constructed by
summing the rows and placing on the diagonals. The elemental lumped mass matrix of a
linear triangular element is

[MLe] = A

12


4 0 0

0 4 0
0 0 4


 = A

3


1 0 0

0 1 0
0 0 1


 (7.163)

If the above mass lumping procedure is introduced into the CBS steps, some small
errors will occur in the transient solution. For steady state solutions, however, no errors
are introduced. However, for transient problems an accurate solution can still be obtained
by appropriate mesh refinement.

7.6.2 Time-step calculation

The time-step restrictions are very similar to the convection–diffusion equation (Equation
7.119). The local time step at each and every node can be computed as follows:

�t = min(�tc, �td) (7.164)
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The convection time step �tc is identical to that of Equation 7.120. The diffusion time
steps contain two parts. One due to the kinematic viscosity and another to the thermal
diffusivity of the fluid. The diffusion time step may be expressed as

�td = min

(
h2

2ν
,

h2

2α

)
(7.165)

where ν is the kinematic viscosity and α is the thermal diffusivity. The local element size
may be calculated using the same procedure as that discussed in Section 7.5. However, a
more advanced method of the calculation of element size, for example, an element size in
the streamline direction, is possible and readers are referred to the appropriate publication
(Tezduyar et al. 2000).

7.6.3 Boundary and initial conditions

The two main boundary conditions prevalent in heat convection problems are the prescribed
temperature, pressure and velocity (Dirichlet conditions) and flux boundary conditions
(Neumann conditions). Other possibilities may be derived from these conditions.

Prescribed values If a value of the velocity components, temperature or pressure is given
at a boundary node, the value will be ‘forced’ at these nodes. The implementation is easy
and straightforward.

Flux conditions In a heat transfer calculation, it is possible to have prescribed heat flux
conditions, which are normally given as

−k
∂T

∂n
= q (7.166)

where n is the normal direction to the surface on which the prescribed flux boundary
is imposed. The heat flux condition is imposed by rearranging {f4} (Equation 7.157) as
follows:

{f4} = �

2
q


1

1
0


 (7.167)

Often, symmetric (or zero flux) boundary conditions are employed in convection heat
transfer calculations. In such cases, the forcing vector terms disappear. Other relevant
boundary conditions will be discussed along with appropriate examples later in this chapter.

In many industrial heat transfer applications, convection heat transfer boundary condi-
tions are common. If a boundary, as shown in Figure 7.14, is convecting to the atmosphere,
then the boundary condition on this wall can be expressed as

−k
∂T

∂n
= hc(T − Ta) (7.168)

where the wall temperature T is unknown. The implementation is carried out by replacing
q (Equation 7.167) by the right-hand side of the above equation. However, T must be
treated as an unknown and should be evaluated at each time step.
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Hot fluid

Porous material

Heat convection

hc

Ta
Air flow

Figure 7.14 Example of convection boundary condition

The initial conditions, which describe the initial state of the fluid (temperature, pressure,
velocity and properties), are employed at the onset of the heat convection calculations. These
conditions are problem-dependent and are discussed for various applications in the latter
sections of this chapter.

7.6.4 Steady and transient solution methods

A steady state solution for a problem can be obtained, using the CBS scheme, by time-
stepping to achieve a steady state. This can be done by fixing a tolerance criterion as
follows:

n nodes∑
i=1

φn+1
i − φn

i

�t
≤ ε (7.169)

where φi is any heat convection variable at a node, n nodes is the total number of nodes and
ε is a prescribed tolerance, which will tend to zero as the solution approaches steady state.

A transient solution can be of two types. The first type is the ‘real’ time variation of
the solution for problems in which a steady state solution exists. The second category is
one that has no real steady state, for instance, vortex shedding behind a cylinder or Bernard
convection. In the first type, the calculations commence with prescribed initial conditions
and progress with a suitable time-stepping algorithm until a steady state is reached. The
time history of the variables need to be stored and monitored as the transient solution
progresses in order to study the behaviour of the solution. In the second type of problems,
that is, Bernard convection and vortex shedding, the steady state tolerance of Equation
7.169 is not applicable and steady state is never reached. The time history of these types
of problems needs to be followed as long as the user is interested in the solution.
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7.7 Artificial Compressibility Scheme

As mentioned before, convection heat transfer calculations can be carried out using a fully
explicit Artificial Compressibility (AC) scheme. In AC schemes, an artificial compressibility
is introduced at Step 2 of the CBS scheme, that is,

1

β2

∂p

∂t
− �t

(
∂2p

∂x2
1

+ ∂2p

∂x2
2

)
+ ∂ũ1

∂x1
+ ∂ũ1

∂x2
= 0 (7.170)

where β is an artificial compressibility parameter. The above equation can be derived by
assuming a density variation in the continuity equation by substituting

∂ρ

∂t
≈ 1

c2

∂p

∂t
(7.171)

where c is the speed of sound, which, for incompressible flows, approaches infinity. How-
ever, c can be replaced by an artificial compressibility parameter β, as given in Equation
7.170, for the purpose of introducing an explicit scheme. In the artificial-compressibility-
based CBS scheme, Step 2 will be replaced with

1

β2
[M]

{�p}
�t

+ [K]{p}n = − 1

�t

[
[G1]{ũ1} + [G2]{ũ2}

]+ {f3} (7.172)

where �{p} = {pn+1 − pn}. The artificial compressibility parameter can be chosen as

β = max(co, uconv, udiff, utherm) (7.173)

where co is a small constant (between 0.1 to 0.5) and uconv, udiff and utherm are respectively
the convection, diffusion and thermal velocities, which may be defined as

uconv =
√

u2
1 + u2

2

udiff = 2ν

h

utherm = 2α

h
(7.174)

All other steps of the CBS scheme remain the same. However, for the solution of
transient problems, a dual time-stepping procedure has to be introduced. In this dual time-
stepping procedure, a transient problem is split into several instantaneous steady states and
integrated via a real global time-step. Further details on the dual time-stepping procedure
can be found in references (Malan et al. 2002; Nithiarasu 2003).

7.8 Nusselt Number, Drag and Stream Function

The two important quantities of interest in many heat transfer applications are the rate
of heat transfer (Nusselt number) and the flow resistance offered by a surface (drag). A
stream function is often used to draw streamlines in order to better understand the flow
pattern around a body. In this section, a brief summary is given on how to calculate these
quantities.
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7.8.1 Nusselt number

The Nusselt number is derived as follows. Let us assume that a hot surface is cooled
by a cold fluid stream. The heat from the hot surface, which is maintained at a constant
temperature, is diffused through a boundary layer and convected away by the cold stream.
This phenomenon is normally defined by Newton’s law of cooling per unit surface area as

hc(Tw − Tf) = −k
∂T

∂n
(7.175)

where hc is the heat transfer coefficient, k is an average thermal conductivity of the fluid,
Tf is the free stream temperature of the fluid and n is the normal direction to the heat
transfer surface. The above equation can be rewritten as

hcL

k
= − 1

Tw − Tf

∂T

∂n
L (7.176)

where L is any characteristic dimension. The quantity on the left-hand side of the above
equation is the Nusselt number. If we apply non-dimensional scales, as discussed in Section
3, we can rewrite the above equation as

Nu = −∂T ∗

∂n∗ (7.177)

where Nu is the local Nusselt number. It should be observed that the local Nusselt number
is equal to the local, non-dimensional, normal temperature gradient. The above definition of
the Nusselt number is valid for any heat transfer problem as long as the surface temperature
is constant, or a reference wall temperature is known. However, for prescribed heat flux
conditions, a different approach is required to derive the Nusselt number. Let us assume a
surface subjected to a uniform heat flux q. We can write locally

q = −k
∂T

∂n
= hc(Tw − Tf) (7.178)

where Tw is not a constant. The Nusselt number relation can be obtained by multiplying
the RHS of the previous equations by L/k, that is,

hcL

k
(Tw − Tf) = qL

k
(7.179)

Rearranging, we obtain

Nu =
qL
k

(Tw − Tf)
(7.180)

When a wall is subjected to heat flux boundary conditions, the temperature scale is
qL/k, which non-dimensionalizes the temperature. Therefore, the above equation can be
rewritten as

Nu = 1

T ∗
w − T ∗

f
(7.181)
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This equation is simpler than that derived for a constant wall temperature and is limited
to the calculation of local non-dimensional wall temperatures (assuming Tf is constant).
Therefore, the calculation of the Nusselt number on a wall subjected to a constant heat flux
is straightforward in any numerical method. However, in the Nusselt number calculation
for a surface subjected to a constant temperature, it is necessary to calculate the normal
temperature gradient. This calculation is simple if using a finite element discretization, in
which the normal gradient is equal to the boundary terms due to the discretization of the
second-order temperature terms, that is,

∂T

∂n
= ∂T

∂x1
n1 + ∂T

∂x2
n2 + ∂T

∂x3
n3 (7.182)

where n1, n2 and n3 are the direction cosines of the surface normal. All the above discussed
quantities are local (on the surface nodes or elements). However, it is often necessary to
have an average Nusselt number for a heat transfer problem. The average Nusselt number
can be easily calculated by integrating the local Nusselt number over a length (in two
dimensions) or over a surface (in three dimensions). For example, in two dimensions,

Nuav = 1

l

∫
l

Nudl = 1

l

nelem∑
i=1

Nuidli (7.183)

where l is the total length of the wall, i indicates a single incremental length of a one-
dimensional element on the wall on which the Nusselt number is calculated and n elem
indicates the total number of one-dimensional elements on the wall. If the length l in the
above equation is replaced by an area, then it can be directly applied to three-dimensional
problems. In order to use the above formula, the local Nusselt number over an incremental
length (dli) is assumed to be constant.

7.8.2 Drag calculation

The drag force is the resistance offered by a body that is equal to the force exerted by
the flow on the body at equilibrium conditions. The drag force arises from two different
sources. One is from the pressure p acting in the flow direction on the surface of the body
(form drag) and the second is due to the force caused by viscosity effects in the flow
direction. In general, the drag force is characterized by a drag coefficient, defined as

Cd = D

Af
1
2ρau2

a

(7.184)

where D is the drag force, Af is the frontal area in the flow direction and the subscript a
indicates the free stream value. The drag force D contains the contributions from both the
influence of pressure and friction, that is,

D = Dp + Df (7.185)

where Dp is the pressure drag force and Df is the friction drag force in the flow direction.
The pressure drag, or form drag, is calculated from the nodal pressure values. For a two-
dimensional problem, the solid wall may be a curve or a line and the boundary elements on
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the solid wall are one-dimensional with two nodes if linear elements are used. The pressure
may be averaged over each one-dimensional element to calculate the average pressure over
the boundary element. If this average pressure is multiplied by the length of the element,
the normal pressure acting on the boundary element is obtained. If the pressure force is
multiplied by the direction cosine in the flow direction, we obtain the local pressure drag
force in the flow direction. Integration of these forces over the solid boundary gives the
drag force due to the pressure Dp.

The viscous drag force Df is calculated by integrating the viscous traction in the flow
direction, over the surface area. The relation for the total drag force in the x1 direction may
be written for a two-dimensional case as

Dx1 =
∫

As

[(−p + τ11)n1 + τ12n2]dAs (7.186)

where n1 and n2 are components of the surface normal n as shown in Figure 7.15.

7.8.3 Stream function

In most fluid dynamics and convection heat transfer problems, it is often easier to understand
the flow results if the streamlines are plotted. In order to plot these streamlines, or flow
pattern, it is first necessary to calculate the stream function values at the nodes. The lines
with constant stream function values, are referred to as streamlines. The stream function is
defined by the following relationships:

u1 = ∂ψ

∂x2

u2 = − ∂ψ

∂x1
(7.187)

where ψ is the stream function. If we differentiate the first relation with respect to x2 and
the second with respect to x1 and then sum, we get the differential equation for the stream

n

As

ua

Figure 7.15 Normal gradient of velocity close to the wall
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function as

∂2ψ

∂x2
2

+ ∂2ψ

∂x2
1

= ∂u1

∂x1
− ∂u2

∂x2
(7.188)

A solution to the above Laplacian equation is straightforward for any numerical pro-
cedure. This equation is similar to Step 2 of the CBS scheme and an implicit procedure
immediately gives the solution. Unlike the pressure equation of Step 2, the stream function
of a solution needs to be calculated only once.

7.9 Mesh Convergence

All numerical schemes are by their nature an approximation and the CBS scheme is no
exception. However, if a scheme is to be convergent, the approximate solution should
approach the exact answer as the mesh is refined. A converged solution is one that is nearly
independent of meshing errors. An extremely coarse mesh would give a very approximate
solution, which is far from reality. As the mesh is refined by reducing the size of the
elements, the solution slowly approaches an exact solution. It should be noted that, in
theory, the solution will not be exact until the mesh size is zero, which is obviously
impossible. However, it is possible to fix a tolerance to the solution error and this can be
achieved by solving the problem on several meshes.

In order to ensure that the solution obtained is as close as possible to reality, solutions
should be obtained from several meshes starting with a very coarse mesh and finishing with
a very fine mesh. Once these solutions are available, many key quantities can be compared
and plotted against mesh densities (or number of points) as shown in Figure 7.16. If the
difference between two consecutive meshes (or number of nodes) is less than a fixed
tolerance, the coarser mesh is normally accepted as a suitable mesh for the analysis.

For two-dimensional problems, it is not difficult to carry out a detailed mesh con-
vergence study for different parameters or cases. However, in large three-dimensional
problems, it is often difficult to carry out a complete mesh convergence study. In such

N
us

se
lt 

nu
m

be
r

Number of nodes

Converged

Figure 7.16 Typical convergence study
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situations, it is customary to compare the results with analytical, or experimental, data if
available. The past experience of the user also helps in obtaining an accurate solution for
complicated problems.

7.10 Laminar Isothermal Flow

In this section, an example of a steady state isothermal flow problem is discussed. The
isothermal solution procedure is obtained by neglecting the temperature, or energy, equation
from the governing set of equations. In other words, Step 4 of the scheme is neglected
thereby assuming isothermal flow. The problem selected is a simple two-dimensional devel-
oping flow in a rectangular channel as shown in Figure 7.17.

7.10.1 Geometry, boundary and initial conditions

The ‘CBS flow’ code is used to solve this problem. The steps employed are as discussed
in Section 7.5. However, the ‘CBS flow’ code is written using a non-dimensional form of
the governing equations. Therefore, the steps of the scheme have to undergo appropriate
changes. The non-dimensional scaling discussed in Section 7.3.1 should be reflected in
the geometry. The non-dimensional geometry used is shown in Figure 7.17. The defined
inlet Reynolds number is based on the inlet height and is therefore equal to unity in the
non-dimensional form. The length of the channel was assumed to be 15 times the height.

On the basis of the characteristic analysis discussed in many books, (Hirsch 1989), a
subsonic, incompressible two-dimensional isothermal flow problem requires two boundary
conditions at the inlet and one boundary condition at the exit. It is normal practice to
impose the velocity components at the inlet and pressure at the exit. In order that pressure
may be imposed at the exit, it is necessary that the flow does not undergo any appreciable
variation close to the exit. In other words, the channel length should be much greater than
the height.

The boundary conditions may be summarized as follows:

Inlet: Uniform velocity component u1 of a non-dimensional value of unity and the velocity
component u2 equal to zero.

Exit: A constant non-dimensional pressure value is assumed. Here, the value is prescribed
as being zero.

Solid wall

Solid wall

15

1

Inlet: u1 = 1, u2 = 0

u1 = u2 = 0
Exit:
p = 0

Figure 7.17 Flow through a two-dimensional rectangular channel. Geometry and boundary
conditions
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Walls: Both velocity components forced to zero (no-slip condition)

Initial conditions: Zero velocities and pressure at all points within the domain.

7.10.2 Solution

Figure 7.18 shows the unstructured mesh used for the calculations. It is a uniform mesh
with 3242 linear triangular elements and 1782 nodes.

The inlet Reynolds number of the flow is assumed to be 100, which is well within
the laminar range. Figure 7.19 shows the velocity profiles along the length of the channel.

Figure 7.18 Flow through a two-dimensional rectangular channel. Finite element mesh
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Figure 7.19 Flow through a two-dimensional rectangular channel. Velocity profiles at
different sections
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Figure 7.20 Flow through a two-dimensional rectangular channel. Comparison of velocity
profiles at various distances
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This solution is a steady state solution generated by an artificial compressibility form of
the CBS scheme. The momentum boundary layer develops as the flow travels downstream.
Figure 7.20 shows a comparison of the velocity profiles for non-dimensional distances
between 0 and 6. It may be seen that the parabolic profile is developed close to a distance
of 4.0. The analytical solution obtained from boundary layer theory (Schlichting 1968)
gives an approximate relation for the non-dimensional developing length as

le = 0.04Re (7.189)

which gives a le = 4.0 for a Reynolds number of 100. It should be noted that the veloc-
ity profile is continuously changing in the downstream direction. A completely unchanged
u1 velocity profile can be obtained only by extending the length of the channel further
(Schlichting 1968). Also, more accurate velocity profiles can be obtained by either employ-
ing a structured mesh or using a finer unstructured mesh. The interested reader is advised
to carry out a mesh convergence study on this type of problem.

7.11 Laminar Non-isothermal Flow

In this section, some examples of non-isothermal problems are discussed. In the previous
section, the temperature effects are ignored, but they are included in this section in order
to study some heat convection problems. The categories of forced convection, buoyancy-
driven convection and mixed convection are discussed in the following subsections:

7.11.1 Forced convection heat transfer

Forced convection heat transfer is induced by forcing a liquid, or gas, over a hot body or
surface. Two forced convection problems will be studied in this section. The first problem
is the extension of flow through a two-dimensional channel as discussed in the previous
section and the second one is of forced convection over a sphere. The difference between
the first problem and the one in the previous section is that the top and bottom walls are
at a higher temperature than that of the air flowing into the channel. The non-dimensional
temperature scale employed is

T ∗ = T − Ta

Tw − Ta
(7.190)

Since the CBS flow code is based on non-dimensional governing equations, a non-
dimensional scaling factor needs to be employed. This scale will give a temperature value of
unity on the walls (T = Tw) and zero at the inlet (T = Ta). Dirichlet boundary conditions for
temperature are not necessary at the exit. However, the boundary integrals resulting from the
discretization of the second-order terms need to be evaluated and added to the equations. For
a steady state solution, all four steps of the CBS scheme can be solved simultaneously, or
firstly a steady flow solution is obtained and then using this result a temperature distribution
can be established independently. The Reynolds number is again assumed to be equal to
100, and the velocity distribution is the same as shown in Figure 7.19. The temperature
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Figure 7.21 Forced convection flow through a two-dimensional rectangular channel. Tem-
perature profiles at various distances

Cold air stream

Hot sphere

Figure 7.22 Forced convection flow past a sphere

profile distribution is as shown in Figure 7.21. As may be seen, a parabolic temperature
profile is achieved at around the same distance from the entrance as that for the parabolic
velocity profile. It should also be noted that as the length of the channel increases, the
average temperature of the fluid also increases and approaches that of the wall temperature.

The second problem considered is a three-dimensional flow over a hot sphere. The heat
transfer aspects of the hot sphere are studied as it is exposed to a cold air stream. The
problem definition is different from that of the channel flow, which is an internal flow, for
in this case the flow past a sphere is an external flow problem as shown in Figure 7.22.

As shown, the sphere is in an unbounded space, and an outer boundary needs defining in
order to carry out the computation. The boundary conditions on the boundary walls should
be fixed in such a way that they do not affect the heat transfer and flow properties close to
the sphere. The best way to minimize the influence of these outer boundary conditions on
the heat transfer and flow around the sphere is to place the boundaries far from the sphere.

In the problem discussed here, an outer boundary is fixed in such a way that the inlet is
at a distance of five diameters from the centre of the sphere, and the exit is at 20 diameters
downstream of the centre of the sphere (Nithiarasu et al. 2004). The side boundaries are
also at a distance of five diameters away from the centre of the sphere. It is possible to
imagine the sphere being placed inside a three-dimensional channel, which is 25 diameters
long having 10 diameter sides. However, the difference from the previous channel problem
is that there is no solid outer wall in this case.

The boundary conditions are simple as in the previous problem. The inlet has a non-
dimensional velocity of unity and a non-dimensional temperature of zero. The surface of
the sphere is subjected to a no-slip velocity boundary condition and a non-dimensional
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temperature of unity. All the side walls are subjected to a zero heat flux and a zero normal
velocity value. At the exit, only the boundary integrals are evaluated and prescribed.

It is obvious that a three-dimensional mesh is required, and for the problem under
consideration, linear tetrahedral elements were used. Three-dimensional meshes were gen-
erated using an efficient mesh generator as reported by Morgan et al. (1999). The total
number of elements used in the computation was approximately a million. The sphere and
a cross-sectional side view along the axis are shown in Figure 7.23.

The temperature contours near the vicinity of the sphere are shown in Figure 7.24
for inlet Reynolds numbers of 100 and 200 respectively. As mentioned previously, the
temperature on the surface of the sphere is unity. This diagram shows a cut view along the

(a) Sphere and two side boundaries (b) Cross-sectional view of the sphere

Figure 7.23 Forced convection heat transfer from a sphere. Three-dimensional mesh

(a) Re = 100 (b) Re = 200

Figure 7.24 Forced convection heat transfer from a sphere. Temperature distribution in
the vicinity of the sphere
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axis in the direction of the flow. Therefore, the temperature values close to the surface of
the sphere are near to unity, which reduce in value away from the sphere and finally reach
zero value in the free air stream. In the downstream direction, however, the temperatures are
greater than that of the free stream temperature all the way to the exit (see Figure 7.25). This
indicates that the cold air stream removes heat from the sphere, which is then transported
to the exit.

The values of drag coefficient and average Nusselt numbers are given in Tables 7.1
and 7.2 respectively. In Table 7.1, the quantity inside the brackets is the pressure drag
coefficient.

7.11.2 Buoyancy-driven convection heat transfer

Buoyancy-driven convection is created by the occurrence of local temperature differences
in a fluid. This type of convection can also be created by local concentration differences

Figure 7.25 Forced convection flow past a sphere. Temperature contours, Re = 100

Table 7.1 Comparison of coefficient of drag with existing literature

Author Re 100 200

Clift et al. (Clift et al. 1978) 1.087 —
S. Lee (Lee 2000) 1.096 (0.512) —
Gülçat and Aslan (Gülçat änd Aslan 1997) 1.07 0.78
Rimon and Cheng (Rimon and Cheng 1969) 1.014 0.727
Le Clair et al. (La Clair et al. 1970) 1.096 (0.590) 0.772 (0.372)
Magnaudet et al. (Magnaudet et al. 1995) 1.092 (0.584) 0.765 (0.368)
CBS 1.105 (0.564) 0.7708 (0.347)

Table 7.2 Comparison of average Nusselt number

Re (Yuge 1960) (Whitaker 1983) (Feng et al. 2000) CBS

50 5.4860 5.1764 5.4194 5.2176
100 6.9300 6.6151 6.9848 6.6589
200 8.9721 8.7219 9.1901 8.7599



224 CONVECTION HEAT TRANSFER

within a fluid, but will not be considered within this text. Buoyancy-driven convection is
present in most flow situations; however, its significance can vary according to the situation.
For instance, in a situation in which a hot surface and a cold fluid interact, without any
other external force, a buoyancy-driven convection pattern will develop. Examples include
radiators inside a cold room, most solar appliances, some cooling applications of electronic
devices and finally phase change applications (Lewis et al. 1995a; Ravindran and Lewis
1998; Usmani et al. 1992b,a).

The principles of buoyancy-driven convection are simple. A local temperature difference
creates a local density difference within the fluid and results in fluid motion because of the
local density variation. Although the principles are simple, the development of an accurate
numerical solution for such buoyancy-driven flows is far from simple. This is mainly due
to the very slow flow rates involved, which are often marked with turbulence, which again
complicates the numerical prediction.

In order to demonstrate buoyancy-driven convection, we shall consider the standard
benchmark problem of natural convection within a two-dimensional square enclosure, as
shown in Figure 7.26. The geometry is a two-dimensional square of non-dimensional unit
size. The walls are solid and subjected to no-slip velocity boundary conditions (zero-velocity
components). One of the vertical walls is subjected to a higher temperature (T = 1) than
the other vertical wall (T = 0). Both the top and bottom walls are assumed to be insulated
(zero heat flux). The steady state solution to this problem is sought herein.

In order to obtain a steady state solution, the CBS flow code is used in its semi-
implicit form with zero initial velocity and temperature values and a small constant value
of pressure (0.1). A simple pressure boundary condition is essential in order to solve the
pressure equations implicitly. One of the corner points has a fixed pressure value of zero at
all times. The parameter varied in this problem is the Rayleigh number. The mesh employed
in the calculations is a structured mesh and is shown in Figure 7.27. Unstructured meshes
are equally valid but require a greater number of elements in order to obtain the same
accuracy as structured meshes. The mesh shown in Figure 7.27 contains 5000 elements
and 2601 nodes.

Insulated

Insulated

T = 1 T = 0

u1 = u2 = 0

u 1
=

u 2
= 

0

u 1
=

u 2
= 

0

u1 = u2 = 0

Figure 7.26 Buoyancy-driven flow in a square enclosure. Geometry and boundary
conditions
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Figure 7.27 Buoyancy-driven flow in a square enclosure. Finite element mesh. Nodes:
2601, elements: 5000

Figures 7.28 shows the temperature contours and streamlines for different Rayleigh
numbers. The flow raises alongside the hot left side wall, taking the heat with it and
eventually losing it alongside the right side wall. As the Rayleigh number increases the
flow becomes stronger and is marked with a thinner flow regime and thermal boundary
layers close to the vertical walls.

Table 7.3 reports various quantities, which have been calculated for the natural con-
vection in a square cavity (Massarotti et al. 1998). In Table 7.3, ψ is the stream function,
Nuav is the average Nusselt number and u2max is the maximum vertical velocity component.
These values compare very well with the benchmark data available in the literature.

Table 7.3 Quantitative
results for natural convection
in a square cavity

Ra Nuav ψmax u2max

103 1.116 1.175 3.692
104 2.243 5.075 19.63
105 4.521 9.153 68.85
106 8.806 16.49 221.6
107 16.40 30.33 702.3
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(a) Streamlines (b) Temperature

Ra = 104

(e) Streamlines (f) Temperature

Ra = 107

(c) Streamlines (d) Temperature

Ra = 106

Figure 7.28 Natural convection in a square enclosure. Streamlines and temperature con-
tours for different Rayleigh numbers, Pr = 0.71
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7.11.3 Mixed convection heat transfer

A mixed convection heat transfer mode has features of both forced and natural convection.
The mixed convection solution to a heat transfer problem is necessary if the Reynolds num-
ber is small and the importance of the buoyancy contribution is significant. The equations
solved are those of forced convection with the addition of a source term (Equation 7.70)
in the gravitational direction. If the direction of gravity is not aligned with either of the
coordinate directions (x1 and x2), then appropriate components of the source term need to
be added to the momentum equations. The effect of mixed convection can be measured by
calculating the source term of Equation 7.70. If this term is close to zero, then the buoyancy
effects can be ignored and a forced convection solution is sufficient. However, if the value
of the source term is far from being zero (either in the negative or positive sense), then a
mixed convection solution is essential.

Here we consider a simple mixed convection problem in a rectangular vertical channel
as shown in Figure 7.29. In order to compare the results with the analytical solution for

g

Cold fluid in

Cold wall
u1 = u2 = 0

Tc = 0

Hot wall
u1 = u2 = 0

Th = 1

Flow reversal

p = 0

1

u2 = 1
u1 = 0
Ta = 0

3

x2

x1

Figure 7.29 Mixed convection in a vertical channel. Geometry and boundary conditions
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fully developed flow in a channel, as given in reference (Aung and Worku 1986a), the
non-dimensional scales require changing. The scales used by Aung and Worku are

x∗
2 = x2

ReL
; u∗

1 = u1L

ν
(7.191)

All other scales are the same as the forced convection scale discussed in Section 7.3. The
above scales lead to some changes in the non-dimensional form of the mixed convection
equation. The source term GrT ∗/Re2 in the mixed convection equation will be GrT/Re

and the Reynolds number at all other locations will disappear. The great advantage of
applying this scale is that the non-dimensional length of the channel can be considerably
reduced. The analytical solution for a fully developed mixed convection profile is given by
Aung and Worku as

u1 = Gr

Re
(1 − rT )

(
−x1

3

6
+ x1

2

4
− x1

12

)
− 6x2

1 + 6x1 (7.192)

where

rT = Tc − Ta

Th − Ta
(7.193)

Figure 7.30 Mixed convection in a vertical channel. Unstructured finite element mesh
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Figure 7.31 Mixed convection in a vertical channel. Developing velocity profiles at var-
ious vertical sections

Two vertical plates serve as the channel walls, one of them being at a higher temperature
(Th = 1) than that of the other wall. The temperature Tc of the cold wall is 0.5 and the cold
fluid entering the channel from the bottom is zero (Ta = 0). A uniform, non-dimensional,
vertical velocity of unity is imposed at the entrance (u2 = 1). The direction of gravity is
assumed to act in the negative x2 direction. The inlet Reynolds number is 100 and the
Grashof number is assumed to be 25,000, which results in a Gr/Re value of 250. At the
exit, zero pressure values are imposed, and the total length of the channel is three times
the width of the channel. The Reynolds number is defined with respect to the width of the
channel.

This in an example of buoyancy-aided convective heat transfer, as the buoyancy is
helping the flow to move quicker by creating a density-driven upward flow close to the hot
wall. However, at very high Richardson numbers, the flow reversal is possible in this type
of problem, as shown in Figure 7.29. It is quite possible in certain practical applications
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Figure 7.32 Mixed convection in a vertical channel. Comparison of velocity profile at
exit with fully developed analytical solution (Aung and Worku 1986b)

that the flow will be forced from the top of the channel (in the negative x2 direction). Such
a flow will be called opposing flow in which the buoyancy-driven flow is in the opposite
direction of the forced flow.

The mesh used in the computations was fully unstructured and is shown in Figure 7.30.
The mesh is fine close to the solid walls and a total number of 8956 elements and 4710 nodes
were employed. Figure 7.31 shows the velocity profile distributions at various heights. As
seen, the air flows upwards close to the inlet and flow reversal occurs somewhere between
the vertical distances of 0.5 and 1.0 from the inlet. The flow is nearly fully developed at a
vertical distance of 2 from the inlet. As mentioned previously, the ratio (GR/Re) is 250
and a further increase in this ratio will lead to a stronger flow reversal. Further details
regarding this type of problem may be found in references (Aung and Worku 1986a) and
(Aung and Worku 1986b). A comparison of the fully developed velocity profile with the
analytical solution is given in Figure 7.32 (Aung and Worku 1986a) and, as may be seen,
the agreement is excellent.

7.12 Introduction to Turbulent Flow

In all convection heat transfer applications, turbulence becomes important for Reynolds or
Rayleigh numbers beyond a certain critical value. However, turbulent convection is a complex
phenomenon, but there are several ways of dealing with such problems. The three major
methods of dealing with turbulent flow problems are the Reynolds Averaged Navier–Stokes
(RANS) model (Launder and Spalding 1972; Mohammadi and Pironneau 1994; Wilcox 1993),
the Large Eddy Simulation (LES) model (Sagaut 1998) and Direct Numerical Simulation
(DNS) (Moin and Makesh 1998) technique. Of these three methods, the DNS technique
gives a detailed and accurate description of turbulent flow, which is obtained by solving the
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Navier–Stokes equations on a mesh with element sizes very close to zero. The disadvantage of
DNS is that computing hardware is not yet available to tackle any reasonably sized practical
problem. The LES technique is computationally less intensive than DNS and results in a
time-dependent turbulent pattern, which is averaged in space. Currently available computing
resources can only just model small-scale 3D problems. The RANS method is the most widely
used turbulence modelling approach in the engineering industry due to the relatively small
number of nodes required to compute turbulence as compared to the DNS and LES techniques.
However, the results are averaged over a time scale and therefore only time-averaged quantities
are obtained from these models. The accuracy of the results are highly dependent on the model
and mesh employed. A detailed discussion on these methods is outside the scope of this book,
but interested readers should consult available text books and research papers on the topic
(Launder and Spalding 1972; Mohammadi and Pironneau 1994; Srinivas et al. 1994; Wilcox
1993; Wolfstein 1970; Zienkiewicz et al. 1996). However, a brief discussion on the RANS
approach is given below.

In the RANS approach, all variables in the Navier–Stokes equations are replaced by
the summation of an averaged value and the instantaneous variation, that is,

φi = φi + φ′
i (7.194)

where φ′
i is the instantaneous variation of φ and φi is a time-averaged value of φ given as

φi = 1

t

∫ t

0
φidt (7.195)

where t is a time scale greater than that of the turbulence scale. Figure 7.33 shows the time
variation of the velocity. Following on from Equation 7.194, we can write the variation of
the different variables as follows:

ui = ui + u′
i; p = p + p′; T = T + T ′ (7.196)

The substitution of the above quantities into the continuity and momentum equations
will lead to the following RANS equations:

t

ui

u’
i

ui

Figure 7.33 Turbulence velocity variation with time
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Conservation of mass

∂u1

∂x1
+ ∂u2

∂x2
= 0 (7.197)

Conservation of momentum, x1 component
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Conservation of momentum, x2 component
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(7.199)

All the terms of the above equations are very similar to the ones derived in the begin-
ning of this chapter, with averaged quantities appearing as the main variable. The major
difference, however, is due to the extra terms appearing in the equations, which are con-
cerned with the turbulent eddy process. These extra terms are normally modelled using
turbulence modelling techniques, in order to obtain time-averaged quantities. Therefore, to
model the turbulence, it is necessary to consider the widely used Boussinesq hypothesis,
namely,

u′
iu

′
j = τR

ij = νt

(
∂ui

∂xj

+ ∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
− 2

3
κδij (7.200)

where τR
ij is the so-called Reynolds stress, νt is the turbulent eddy viscosity and κ is the

turbulent kinetic energy.
On substituting Equation 7.200 into the time-averaged momentum Equations 7.198 and

7.199, we obtain the final form of the averaged momentum equations as

Conservation of momentum, x1 component
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Conservation of momentum, x2 component
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(7.202)

A closer examination of the time-averaged continuity Equation 7.197 and the momen-
tum Equations 7.201 and 7.202, shows that the extra parameters which remain and require
determination, are the turbulent eddy viscosity νt and the turbulent kinetic energy κ .

The turbulent eddy viscosity may be calculated from several turbulence models. The
accuracy of such turbulence models can vary, but in this case a one-equation turbulence
model will be considered, which employs one transport equation in the calculation of the
turbulent eddy viscosity. The turbulent eddy viscosity relation is given as

νt = C1/4
µ κ1/2lm (7.203)
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where Cµ is a constant equal to 0.09 and lm is the Prandtl mixing length, which is assumed
to be lm = 0.4y, where y is the shortest distance from a node to the solid wall. The turbulent
kinetic energy may be obtained by solving the following transport equation:

∂κ

∂t
+ ∂uiκ

∂xj

= ∂

∂xi

(
ν + νt

P rt

) ∂κ

∂xi

+ τR
ij

∂ui

∂xj

− ε (7.204)

where Prt is the turbulent Prandtl number that is normally taken to be equal to unity. For
the one equation model, the isotropic turbulence energy dissipation rate ε is

ε = CD

κ3/2

L
(7.205)

where the length scale of the turbulence L = lm(CD/Cµ
3)1/4 and CD is equal to 1.

7.12.1 Solution procedure and result

The solution procedure follows the steps of the CBS scheme as discussed previously in
Section 7.6. If isothermal flow is of interest, then the temperature equation is ignored, and a
solution to the turbulent kinetic energy equation becomes the fourth step. For non-isothermal
problems, the temperature equation is solved at Step 4, and the turbulent kinetic energy
equation is solved at Step 5. At each and every time step, the turbulent eddy viscosity is
calculated and substituted into the averaged momentum equations. The example solved is
for the case of isothermal flow through a two-dimensional, horizontal rectangular channel.
The problem definition is the same as for the example given in Section 7.10. The difference
being that the extra boundary condition for the turbulent kinetic energy needs to be imposed.
The turbulent kinetic energy value is fixed at the inlet (κ = 0.1) and zero on the walls. The
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Figure 7.34 Flow through a two-dimensional rectangular channel. Comparison of the exit
velocity profile with experimental data (Laufer 1951) at Re = 24,600
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channel employed in this case is longer than that used for the laminar computation, that is,
40 times the height of the channel.

A structured mesh, with 12,000 elements and 6161 nodes, has been employed in the
turbulent flow calculations. The horizontal velocity distribution at the exit of the chan-
nel is compared with available experimental data and is shown in Figure 7.34. The inlet
Reynolds number is 24,600. The agreement between the experiments and the numerical
results is excellent away from the wall. More advanced turbulence models will result in
better accuracy of the results.

7.13 Extension to Axisymmetric Problems

The axisymmetric formulation of the heat conduction equations has been discussed in
many of the earlier chapters. Here, an extension of the plane formulation to axisymmetric
convection heat transfer problems will be discussed. The governing equations, in cylindrical
coordinates, are given with respect to Figure 7.35 as follows:

Conservation of Mass

1

r

∂(rur )

∂r
+ ∂uz

∂z
= 0 (7.206)

r

z

Figure 7.35 Coordinate system for axisymmetric geometries
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r momentum component
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z momentum component

∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂ur

∂z
= − 1

ρ

∂p

∂z
+ ν

(
1

r

∂

∂r

(
r
∂uz

∂r

)
+ ∂2uz

∂z2

)
(7.208)

Energy equation
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(7.209)

The CBS procedure follows the same steps as for the plane problem. However, the
integration of the matrices will be different as the area of the element will no longer
be two-dimensional. For example, let us consider the diffusion matrix of the momentum
equation. The momentum diffusion matrix for the plane problem is given by Equation
7.148. We can rewrite this as

[Kmez ] = ν

∫
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2πrdA (7.210)

where the radial coordinate r is expressed as

r = Niri + Njrj + Nkrk (7.211)

The formula used in the integration is the same as for any linear triangular element
(Equation 7.110). On applying Equation 7.110,Equation 7.210 becomes
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2πA

3
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All the other terms of the axisymmetric equations may be discretized in a similar fash-
ion. In discretizing the r momentum diffusion terms, the term ur/r2 can be approximated
by averaging r over an element.

7.14 Summary

In this chapter, we have given a brief overview of convection heat transfer. However, the
subject is vast in extent and it is difficult to cover all aspects within a single chapter.
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Several details have been neglected in order to keep the discussion brief. For instance,
higher-order elements have not been discussed, and few solution procedures have been
touched upon. Special topics such as adaptive meshing for heat transfer applications is
not mentioned (Lewis et al. 1991; Nithiarasu 2002; Nithiarasu and Zienkiewicz 2000).
However, the CBS scheme for convection heat transfer has been discussed in detail for
linear triangular elements. A complete knowledge of such a single scheme will provide
the reader with a strong starting point for understanding other relevant fluid dynamics and
convection heat transfer solution procedures.

7.15 Exercise

Example 7.15.1 Derive a convection–diffusion equation using a differential control volume
approach.

Example 7.15.2 Derive the CG method for a convection–diffusion equation with the source
term Q.

Example 7.15.3 Derive Navier–Stokes equations in cylindrical and spherical coordinates.

Example 7.15.4 Reduce the incompressible Navier–Stokes equations to solve a one-
dimensional convection heat transfer problem.

Example 7.15.5 For natural convection problems, if α is replaced by ν in the non-
dimensional scaling, derive the new non-dimensional form.

Example 7.15.6 Calculate laminar flow and heat transfer from a hot cylinder at Re = 40
using the CBS flow code. Assume the buoyancy effect is negligible.

Example 7.15.7 Compute the transient vortex shedding phenomenon behind a circular
cylinder at Re = 100 using CBS flow. Assume that the flow is isothermal.

Example 7.15.8 Write a program in any standard scientific language to calculate stream
functions from a computed velocity field.
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8

Convection in Porous Media

8.1 Introduction

The phenomenon of fluid flow and heat transfer in porous media has been recognized
as a separate engineering topic for the last three decades. Several books have been pub-
lished on this topic (Kaviany 1991; Lewis and Schrefler 1998; Nield and Bejan 1992;
Zienkiewicz et al. 1999). Convective heat transfer in porous media occurs in many engi-
neering applications including packed beds, thermal insulation, metal solidification and
geothermal problems. Advanced applications such as petroleum reservoirs, multi-phase
flows and drying have also been studied using finite elements (Lewis and Ferguson 1990;
Lewis et al. 1984, 1983, 1989; Lewis and Sukirman 1993; Murugesan et al. 2001; Pao
et al. 2001). A wide variety of solution methodologies, both analytical and numerical, are
available for solving porous media flow and heat transfer. Analytical methods are limited
by many factors and the solution of realistic field problems is normally intractable by such
techniques. With the advent of computing power in the last three decades, solutions to
many practical porous medium problems are feasible using numerical methods (Lewis and
Schrefler 1998; Zienkiewicz et al. 1999). Such numerical solution procedures have their
own limitations, for example, accuracy, implementation difficulties and so forth. However,
with a proper combination of algorithms and discretization techniques, it is possible to
obtain reasonably accurate solutions for complex problems, in which analytical approaches
would not be feasible. In this chapter, the finite element modelling of incompressible flow
and heat transfer through porous media will be outlined in detail.

The flow of fluid in a saturated porous media was quantified by a simple, phenomeno-
logical, linear relation by Darcy in the nineteenth century (Darcy 1856). Darcy’s law relates
the pressure drop (head) to the flow rate across a porous column. The following relation
can be written from such observations:

ui = − κ

µ

∂p

∂xi

(8.1)

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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Where ui are the seepage velocity components, κ (m2) is the permeability of the
medium, µ is the dynamic viscosity of the fluid, p is the pressure and xi are the coordinate
axes. For two-dimensional flow, we can rewrite the velocity components as

u1 = − κ

µ

∂p

∂x1

u2 = − κ

µ

∂p

∂x2
(8.2)

It is interesting to note that the above equation is very similar to Ohm’s law for the flow
of electricity, Fourier’s law of heat conduction and Fick’s law for mass diffusion. However,
simple relations such as Darcy’s law are not always applicable, and further modifications
or extensions are necessary in order to accurately predict the flow field in porous media.

Several years after the introduction of Darcy’s law, two major additions to the model
have extended its use in many engineering disciplines including chemical, mechanical and
civil engineering. The first extension was due to Forchheimer (Forchheimer 1901), and this
modification accounted for moderate and high Reynolds number effects with the addition
of a nonlinear term in the Darcy equation. A relationship for the drag force was introduced
by Forchheimer, Figure 8.1, as

Dp = aui + bu2
i (8.3)

Solid particle

Flow direction

Dp

Figure 8.1 Drag force on a porous medium grain
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which is balanced by the pressure force as follows:

aui + bu2
i = − ∂p

∂xi

(8.4)

In the above equation, the first term on the left-hand side is, in essence, similar to the
linear drag term introduced by Darcy, and the second term is the nonlinear drag term. The
parameters a and b are determined by empirical relations and one such correlation was
given by Ergun (Ergun 1952), that is,

a = 150
(1 − ε2)

ε3

µf

dp
2

(8.5)

and

b = 1.75
(1 − ε)

ε3

ρf

dp
(8.6)

It should be noted, however, that other suitable correlations may also be employed for
different ranges of the bed porosity, ε, to obtain the non-Darcian flow behaviour inside a
porous medium. In the above equations, dp is the solid particle size in a porous medium,
and ρf is the fluid density. The above solid matrix drag relation can also be expressed in
terms of the medium permeability κ by defining

κ = ε3dp
2

150(1 − ε)2
(8.7)

The flow relationship, given by Equation 8.4, can be rewritten in terms of permea-
bility as

µfui

κ
+ 1.75√

150

ρf√
κ

|V|
ε3/2

ui = − ∂p

∂xi

(8.8)

Although the above equation gives an accurate solution at higher Reynolds numbers,
it is not accurate enough to solve flow in highly porous and confined media. In order to
deal with the viscous and higher porosity effects, Brinkman introduced an extension to
the Darcy model in 1947, which included a second-order viscous term with an equivalent
viscosity for the porous medium (Brinkman 1947). The viscous extension, as given by
Brinkman, can be written as (Figure 8.2)

aui = − ∂p

∂xi

+ µe
∂2ui

∂x2
i

(8.9)

where µe is the equivalent viscosity of the porous medium. This modification takes into
account the no-slip conditions that exist on the confining walls (Tong and Subramanian
1985).

The Darcy model and the extensions discussed above have been widely used in the past.
However, a generalized model, incorporating the flow regimes covered by both Darcy’s
model and its extension, will have several advantages (Hsu and Cheng 1990; Nithiarasu
et al. 1997, 2002; Vafai and Tien 1981; Whitaker 1961). One of these is that the gener-
alized flow model approaches the standard incompressible Navier–Stokes equations when
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Velocity profile

Solid wall

Figure 8.2 Viscous forces on a bounding wall of a porous medium

porosity approaches a value of unity. The discussion on convection in porous media in
this chapter will be brief and based on the generalized porous medium approach. Readers
should be aware of the CBS scheme and the notations used in the previous chapter before
reading this section.

8.2 Generalized Porous Medium Flow Approach

In this section, a generalized model for solving porous medium flows will be presented. Let
us consider the balance of mass, momentum, energy and species for two-dimensional flow
in a fluid-saturated porous medium of variable porosity. The derivations are very similar to
the one discussed in Chapter 7. We shall assume the medium to be isotropic with constant
physical properties, except for the medium porosity. Let af be the fraction of area available
for flow per unit of cross-sectional area (Figure 8.3), at a location in a given direction. In
fact, af is an averaged quantity, the average being taken over the length scale of the voids
(or the length scale of the particles, if the porous bed is made up of particles), in the flow
direction. For an isotropic porous bed, af will be identical in all directions and can also
be equal to the local bed porosity, ε. In spite of averaging over the void length scale, the

Fluid

∆ x1

∆ x2

Solid

Figure 8.3 Fluid-saturated porous medium. Infinitesimal control volume
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fractional area af may vary from location to location on the macro-length scale ‘L’ of the
physical problem owing to the variation of the bed porosity.

The porosity, ε, of the medium is defined as

ε = void volume

total volume
= af�x1�x2

�x1�x2
= af (8.10)

Now, the mass balance of an arbitrary control volume, as shown in Figure 8.3, gives
(refer to Chapter 7)

∂ρf

∂t
+ ∂(ρfu1f)

∂x1
+ ∂(ρfu2f)

∂x2
= 0 (8.11)

where the subscript ‘f’ stands for fluid, ρ is the density and u1 and u2 are the velocity com-
ponents in the x1 and x2 directions respectively. The volume averaged velocity components
may be defined as (Nield and Bejan 1992),

u1 = εu1f u2 = εu2f (8.12)

Equation 8.11 can be simplified for an incompressible flow (constant density) as
follows:

∂u1

∂x1
+ ∂u2

∂x2
= 0 (8.13)

Similarly, the equation for momentum balance can be derived. For instance, in the x2

direction, the momentum balance gives

ρf

ε

[
∂u2

∂t
+ ∂

∂x1

(u1u2

ε

)
+ ∂

∂x2

(
u2

2

ε

)]
=

−1

ε

∂

∂x2
(pfε) + µe

ε

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)
+ (ρref − ρf)g − Dx2 (8.14)

where µe is the equivalent viscosity, pf the fluid pressure, g the acceleration due to gravity
and Dx2 is the matrix drag per unit volume of the porous medium. The particle drag can
be expressed in the following form, as discussed in Section 8.1:

Dp = aV + bV 2 (8.15)

for a one-dimensional flow with velocity V . For two-dimensional flow, the drag in the x2

direction is given as
Dx2 = au2 + b(u2

1 + u2
2)

1/2u2 (8.16)

by resolving the vertical drag expression along the x2 direction. In the present formulation,
Ergun’s correlation for the constants a and b, given in Equations 8.5 and 8.6, will be used.

Now, the solid matrix drag component Dx2 can be written as

Dx2 = µfu2

κ
+ 1.75√

150

ρf√
κ

|V|
ε3/2

u2 (8.17)
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where V is the velocity vector in the field. By substituting Equation 8.17 into Equation 8.14,
we obtain

ρf

ε

[
∂u2

∂t
+ ∂

∂x1

(u1u2

ε

)
+ ∂

∂x2

(
u2

2

ε

)]
= −1

ε

∂

∂x2
(pfε) + µe

ε

(
∂2u2

∂x2
1

+ ∂2u2

∂x2
2

)

+(ρref − ρf)g − µfu2

κ
− 1.75√

150

ρf√
κ

|V|
ε3/2

u2 (8.18)

Similarly, other momentum components can also be derived, and the final form of the
governing equations for incompressible flow through a porous medium in dimensional form
can be given, using indicial notation, as

Continuity
∂ui

∂xi

= 0 (8.19)

Momentum
ρf

ε

[
∂ui

∂t
+ ∂

∂xj

(uiuj

ε

)]
= −1

ε

∂

∂xi

(pfε) + µe

ε

∂2ui

∂x2
i

+(ρref − ρf)gγi − µfui

κ
− 1.75√

150

ρf√
κ

|V|
ε3/2

ui (8.20)

The previous equation can be simplified by substituting Equation 8.19 into
Equation 8.20. The energy conservation equation is also derived in a similar manner. The
final form of the energy equation is
Energy [

ε(ρcp)f + (1 − ε)(ρcp)s
] ∂T

∂t
+ (ρcp)fui

∂T

∂xi

= k

(
∂2T

∂x2
i

)
(8.21)

In the above equation, t is the time, cp is the specific heat, γi is a unit vector in the
gravity direction, T is the temperature and k is the equivalent thermal conductivity. The
subscripts f and s stand for the fluid and solid phases respectively.

It should be noted that the permeability and thermal conductivity values can be direc-
tional, in which case they are tensors.

8.2.1 Non-dimensional scales

The non-dimensional form of the equations simplifies most of the calculations. The fol-
lowing final form of the non-dimensional equations may be obtained by suitable scaling.

Continuity equation
∂u∗

i

∂x∗
i

= 0 (8.22)
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Momentum equations

1

ε

∂u∗
i

∂t∗
+ 1

ε
u∗

j

∂

∂x∗
j

(
u∗

i

ε

)
= −1

ε

∂

∂x∗
i

(εp∗
f ) − u∗

i

ReDa

− 1.75√
150

|V∗|√
Da

u∗
i

ε3/2
+ J

Reε

(
∂2u∗

i

∂x∗
i

2

)
+ γi

Gr

Re2
T ∗ (8.23)

Energy equation

σ
∂T ∗

∂t∗
+ u∗

i

∂T ∗

∂x∗
i

= k∗

ReP r

(
∂2T ∗

∂x∗
i

2

)
(8.24)

In the previous equations, the parameters governing the flow and heat transfer are the
Darcy number (Da), Reynolds number (Re), Prandtl number (Pr), Grashof number (Gr),
the ratio of heat capacities (σ ); porosity of the medium (ε), conductivity ratio (k∗), viscosity
ratio (J ), and the anisotropic property ratios, for the case of an anisotropic medium. The
definitions for the scales and non-dimensional parameters are

x∗
i = xi

L
; u∗

i = ui

ua
; t∗ = tua

L
; p∗

f = pf

ρfua
2
; T ∗ = T − Ta

Tw − Ta
; J = µe

µf
;

σ = ε(ρcp)f + (1 − ε)(ρcp)s

(ρcp)f
; k∗ = k

kf
; Re = ρfuaL

µf
;

Pr = νf

αf
; Da = κ

L2
; Gr = gβ�T L3

ν2
f

(8.25)

The above scales are suitable for most forced and mixed convection problems. However,
for buoyancy-driven flows, it is convenient to handle the equations using the following
definition of the Rayleigh number (Ra), that is,

Ra = gβ�T L3

να
(8.26)

where the following different scales need to be employed in solving natural convection
problems:

u∗
i = uiL

αf
; t∗ = tαf

L2
; p∗ = pL2

ρfα
2
f

(8.27)

The non-dimensional governing equations for natural convection are

Continuity equation

∂u∗
i

∂x∗
i

= 0 (8.28)

Momentum equations

1

ε

∂u∗
i

∂t∗
+ 1

ε
u∗

j

∂

∂x∗
j

(
u∗

i

ε

)
= −1

ε

∂

∂x∗
i

(εp∗
f ) − Pru∗

i

Da

− 1.75√
150

|V∗|√
Da

u∗
i

ε3/2
+ JP r

ε

(
∂2u∗

i

∂x∗
i

2

)
+ γiRaP rT ∗ (8.29)



CONVECTION IN POROUS MEDIA 247

Energy equation

σ
∂T ∗

∂t∗
+ u∗

i

∂T ∗

∂x∗
i

= k∗
(

∂2T ∗

∂x∗
i

2

)
(8.30)

Other alternative scales are possible and the appropriate references should be consulted
to learn more about scaling. In the above formulation, the buoyancy effects are incorpo-
rated by invoking the Boussinesq approximation as discussed in Chapter 7. The kinematic
viscosity ν, used in the above scales, is defined as

ν = µ

ρ
(8.31)

and α is the thermal diffusivity, given as

αf = kf

(ρcp)f
(8.32)

It may be observed that the scales and non-dimensional parameters are defined by
using the fluid properties. Often, a quantity called the Darcy–Rayleigh number is used in
the literature as a governing non-dimensional parameter for Darcy flow. This is the product
of the Darcy (Da) and fluid Rayleigh (Ra) numbers as defined previously.

8.2.2 Limiting cases

The equations discussed above represent a porous medium, which tends to a solid as the
porosity, ε → 0. Thus, a conjugate problem, in which part of the domain is completely
solid, can be dealt with by using the above equations.

Another limiting case of these equations is that they approach the incompressible
Navier–Stokes equations as ε → 1. Again, a very general problem in which the porous
medium and a single-phase fluid are part of the domain (porous-fluid interface (Massarotti
et al. 2001)) can be solved by using the above equations. Thus, many applications such as
alloy solidification (Sinha et al. 1992) and heat exchanger design can be analysed via these
equations.

8.3 Discretization Procedure

The CBS scheme will be employed to solve the porous medium flow equations. In this
context, the same four steps, with minor modifications, will be utilized as discussed in the
previous chapter.

In the following subsections, the temporal and spatial discretization schemes are given,
which will then be employed to solve the porous medium equations. Use will be made
only of simple, linear triangular elements to study porous medium flow problems.

8.3.1 Temporal discretization

Before going into the details of the CBS split, let us first consider the temporal discretization
of the governing equations. The momentum equation is subjected to the characteristic
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Galerkin procedure, as discussed in the previous chapter, namely,

un+1
i − un

i

ε�t
= −1

ε

∂(pε)

∂xi

n+θ

−
[

uj

ε

∂

∂xj

(ui

ε

)]n+θ1

+
[

1

εRe

∂2ui

∂x2
i

]n+θ2

−
[

ui

ReDa
+ C

|V|√
Da

ui

ε3/2

]n+θ3

+ CG terms (8.33)

The body force terms are neglected in the above equation in order to simplify the pre-
sentation. Additional dissipation, due to the characteristic Galerkin terms, may be neglected
here as we are dealing with very slow speed flow problems, especially at lower Rayleigh
or Reynolds numbers.

In Equation 8.33, the parameter ‘C’ is a constant equal to 1.75/
√

150 (see
Equation 8.21). The parameters θ , θ1, θ2 and θ3 all vary between zero and unity and
with appropriate values, different schemes of interest can be established. The superscript θ

should be interpreted as
f n+θ = θf n+1 + (1 − θ)f n (8.34)

where the superscript n indicates the nth time iteration.
In the CBS scheme, the velocities are calculated by splitting Equation 8.33 into two

parts as below. In order to simplify the presentation, θ1, θ2 and θ3 are assumed to be equal
to zero. It is important to note, however, that such an assumption severely restricts the time
step, which can be employed in the calculations. The semi- and quasi- implicit schemes,
as discussed in Section 8.3.3, are the schemes widely employed for porous media flow
calculations.

In Step 1, the pressure term is completely removed from Equation 8.33 and the interme-
diate velocity components ũi are calculated (similar to Step 1 of the CBS scheme discussed
in Chapter 7) as

�ũi

ε�t
= ũi − un

i

ε�t
= −

[
uj

ε

∂

∂xj

(ui

ε

)]n

+
[

1

εRe

∂2ui

∂x2
i

]n

−
[

1

ReDa
ui + C

|V|√
Da

ui

ε3/2

]n

(8.35)

The velocities can be corrected using the following equation, which has been derived by
subtracting Equation 8.35 from Equation 8.33, that is,

�ui

ε�t
= un+1

i − un
i

ε�t
= �ũi

�t
− 1

ε

∂(pε)

∂xi

n+θ

(8.36)

However, the value of the pressure in the above equation is not known. In order to
establish the pressure field, a pressure Poisson equation can be derived from the above
equation and may be written as (see Section 7.6)

1

ε

∂2

∂x2
i

(pε)n+θ = 1

�t

∂u∗
i

∂xi

(8.37)
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The above simplified equation has been derived by substituting the equation of conti-
nuity. Thus, the conservation of mass is satisfied indirectly without explicitly solving for
the mass conservation Equation 8.23.

We have a total of three steps to obtain a solution for the momentum and continuity
equations. As discussed in Chapter 7, Equation 8.35 is solved at the first step, followed
by Equation 8.37 in the second step and Equation 8.36 in the third step. Additional steps,
such as temperature or concentration calculations, can be added as an addition to the above
three steps.

In problems in which non-isothermal and mass transfer effects are involved, additional
equations will be solved, after velocity correction. If no coupling exists between the veloc-
ities and the other variables, such as temperature and concentration and the steady state
solution is only of interest, the steady velocity and pressure fields can be established first,
and the rest of the variables can be calculated using the steady state velocity and pressure
values.

8.3.2 Spatial discretization

Once a temporal discretization of the equations has been achieved, then a spatial discretiza-
tion may be carried out. In this text, the finite element discretization will be carried out
using linear triangular elements. Assuming a Galerkin approximation, the variables can be
expressed as

ui = [N]{ui}; �ui = [N]{�ui}; �ũi = [N]{�ũi}; p = [N]{p}; ε = [N]{ε} (8.38)

where [N] are the shape functions. We assume that the equations are solved in the order
mentioned before, that is, first the intermediate velocity components, then the pressure field
and, finally, the velocity correction. On considering the intermediate velocity calculation,
we have the following weak form, in which porosity is assumed to be an averaged quantity
over an element and body forces are neglected for the sake of simplicity:

∫
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 + b.t (8.39)

where b.t. represents the boundary integral resulting from an integration by parts of the
second-order terms (Green’s lemma, Appendix 1). The weak form of the Step 2 calculation
for the pressure field can be written (assuming θ = 1) as
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 (8.40)
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Finally, Step 3 can be written in a weak form as∫



[N]T�uid
 =
∫




[N]T�ũid
 − �t

∫



[N]T ∂p

∂xi

n+1

d
 (8.41)

Other field variables, such as temperature and concentration, can be established in a
similar fashion via Step 1 and will be discussed later.

The final matrix form of the assembled equations is obtained by introducing
Equation 8.38 into Equations 8.39 to 8.41 and are written in a matrix form, as follows:

Step 1: Intermediate velocity calculation

x1 momentum component

[Mp]{�ũ1} = �t
[−[Cp]{u1} − [Kp]{u1} − [Mp1]{u1} − [Mp2]{u1}

]n + {f1} (8.42)

x2 momentum component

[Mp]{�ũ2} = �t
[−[Cp]{u2} − [Kp]{u2} − [Mp1]{u2} − [Mp2]{u2}

]n + {f2} (8.43)

Step 2: Pressure field

[Kp1]{p}n+1 = − 1

�t

[
[Gp1]{ũ1} + [Gp2]{ũ2}

]n − {f3} (8.44)

Step 3: Momentum correction

[Mp]{�u1} = [Mp]{�ũ1} − �t[Gp1]{p}n+1

[Mp]{�u2} = [Mp]{�ũ2} − �t[Gp2]{p}n+1 (8.45)

The matrices in the above equations are the assembled global matrices. The elemental
matrices of the porous medium equations, for linear triangular elements, are (similar to the
ones reported in Chapter 7)

Elemental mass matrix

[Mpe] = A

12ε


2 1 1

1 2 1
1 1 2


 (8.46)

Elemental convection matrix

[Cpe] = 1

24ε2


(usu + u1i )bi (usu + u1i )bj (usu + u1i )bk

(usu + u1j )bi (usu + u1j )bj (usu + u1j )bk

(usu + u1k)bi (usu + u1k)bj (usu + u1k)bk




+ 1

24ε2


(vsu + u2i )ci (vsu + u2i )cj (vsu + u2i )ck

(vsu + u2j )ci (vsu + u2j )cj (vsu + u2j )ck

(vsu + u2k)ci (vsu + u2k)cj (vsu + u2k)ck


 (8.47)

where
usu = u1i + u1j + u1k

vsu = u2i + u2j + u2k (8.48)
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Here, i, j and k represent the three nodes of a linear triangular element. Refer to
Chapter 7 for the definitions of bi , bj , bk, ci , cj and ck. The momentum diffusion matrix is

[Kme] = 1

4AReε


 b2

i bibj bibk

bj bi b2
j bj bk

bkbi bkbj b2
k


+ 1

4AReε


 c2

i cicj cick

cj ci c2
j cj ck

ckci ckcj c2
k


 (8.49)

The characteristic stabilization matrices have been ignored, but can be included for the
purpose of oscillations at very high Reynolds and Rayleigh numbers (see Chapter 7). At
lower Reynolds and Rayleigh numbers, however, these terms may be neglected in order to
save computational time.

The matrix form of the discretized second-order term for Step 2 is

[Kp1e] = 1

4A


 b2

i bibj bibk

bj bi b2
j bj bk

bkbi bkbj b2
k


+ 1

4A


 c2

i cicj cick

cj ci c2
j cj ck

ckci ckcj c2
k


 (8.50)

The first-gradient matrix in the x1 direction is

[Gp1e] = 1

6


bi bj bk

bi bj bk

bi bj bk


 (8.51)

and the second-gradient matrix in the x2 direction is

[Gp2e] = 1

6


ci cj ck

ci cj ck

ci cj ck


 (8.52)

The matrices due to the fluid drag on the solid are

[Mp1e] = 1

Reε
[Mpe]

[Mp2e] = C√
Da

|V|
ε3/2

[Mpe] (8.53)

The forcing vectors (boundary terms) are, for the x1 momentum component,

{f1} = 	

4A

1

Reε


biu1i + bju1j + bku1k

biu1i + bju1j + bku1k

0




n

n1

+ 	

4A

1

Reε


ciu1i + cju1j + cku1k

ciu1i + cju1j + cku1k

0




n

n2 (8.54)
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Note that ij is assumed to be the boundary edge of an element. The forcing vector of
the x2 component of the momentum equation is

{f2} = 	

4A

1

Reε


biu2i + bju2j + bku2k

biu2i + bju2j + bku2k

0




n
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+ 	

4A

1

Reε


ciu2i + cju2j + cku2k

ciu2i + cju2j + cku2k

0




n

n2 (8.55)

The forcing vector, arising from the discretization of the second-order pressure terms
in Step 2, is

{f3} = 	

4A


bipi + bjpj + bkpk

bipi + bjpj + bkpk

0




n

n1

+ 	

4A


cipi + cjpj + ckpk

cipi + cjpj + ckpk

0




n

n2 (8.56)

The implementation of the flux and other boundary conditions is very similar to the
method discussed in the previous chapter.

8.3.3 Semi- and quasi-implicit forms

Single-phase incompressible fluid flow problems can be solved in a fully explicit form,
which is quite popular in fluid dynamics calculations (Malan et al. 2002; Nithiarasu 2003).
However, a solution for the generalized porous medium equations using a fully explicit
form has been less successful. This is mainly due to the large values of the solid matrix
drag terms, especially at smaller Darcy numbers. In order to eliminate some of the time-
step restrictions imposed by these terms, schemes other than the fully explicit forms are
discussed below.
In the semi-implicit (SI) form (Nithiarasu and Ravindran 1998), the porous medium source
terms and pressure equation are treated implicitly. In other words, θ = θ3 = 1 and θ1 =
θ2 = 0. Although this scheme has good convergence characteristics, further complications
are introduced by the scheme. The split in the momentum equation (Equation 8.35) will be
different, that is,
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(8.57)
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The Step 2 pressure calculation becomes
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Step 3 is also different and is given as(
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(8.60)

Although extra complications were introduced in the semi-implicit form at Step 1 for steady
state solutions, we can avoid simultaneous solution of the algebraic equations by taking
the coefficient

CO =
(

1

�tε
+ 1

ReDa
+ C√

Da

|V|
ε3/2

)
(8.61)

on to the RHS. Thus, the system can be enabled for the mass lumping procedure (Nithiarasu
and Ravindran 1998) when discretized in space. The final matrix form of the three steps are

Step 1: Intermediate velocity calculation

x1 momentum component

[Mp]{ũ1} = [Mp]
{u1}
ε�t

+ CO−1 [−[Cp]{u1} − [Kp]{u1} + {f1}
]n

(8.62)

x2 momentum component

[Mp]{ũ2} = [Mp]
{u2}
ε�t

+ CO−1 [−[Cp]{u2} − [Kp]{u2} + {f2}
]n (8.63)

Step 2: Pressure field

[Kp1]{p}n+1 = −CO

�t

[
[Gp1]{ũ1} + [Gp2]{ũ2} − {f3}

]n
(8.64)

Step 3: Momentum correction

[Mp]{u1}n+1 = [Mp]{ũ1} − CO−1[Gp1]{p}n+1

[Mp]{u2}n+1 = [Mp]{ũ2} − CO−1[Gp2]{p}n+1 (8.65)

The quasi-implicit (QI) form is very similar to that of the above scheme but now the
viscous, second-order terms are also treated implicitly (θ2 = 1) (Nithiarasu et al. 1997).
The important difference, however, is that the quasi-implicit scheme does not benefit from
mass lumping when solving for the intermediate velocity values. A simultaneous solution
of the LHS matrices is essential here. It has been proven that both the QI and SI schemes
generally perform well (Nithiarasu 2001).
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8.4 Non-isothermal Flows

Several examples of porous medium flow problems are non-isothermal in nature. The main
focus in this case will be to demonstrate non-isothermal flow through a porous medium. As
mentioned previously, an energy equation needs to be solved, in addition to the momentum
and pressure equations if the flow is non-isothermal. For steady state problems, if no
coupling exists between the momentum and energy equation, the temperature field can be
established after calculation of the velocity fields. The temporal discretization of the energy
equation can be written in a similar form to the momentum equation and is given as

σ
T n+1 − T n

�t
= −

[
ui

∂T

∂xi

]n+θ1

+ k∗

ReP r

[
∂2T

∂x2
i

]n+θ2

(8.66)

where θ1 and θ2 have the same meaning as previously discussed in Section 8.3. The variable
involved in this case is temperature and can be spatially approximated as

T = [N]{T} (8.67)

The weak form of the energy equation can be written (assuming θ1 and θ2 are both equal
to zero) as∫
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d
 + b.t.

(8.68)

where
�T = T n+1 − T n (8.69)

The substitution of Equation 8.67 into Equation 8.68 yields the final global matrix form of
the energy equation, that is,

σ [Mp]{�T} = −�t
[
[Cp]{T} + [KT ]{T} − {f4}

]n (8.70)

where the elemental matrices are

[KT e] = k∗

4AReP r


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i bibj bibk

bj bi b2
j bj bk

bkbi bkbj b2
k


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
 c2

i cicj cick

cj ci c2
j cj ck

ckci ckcj c2
k


 (8.71)

and the forcing vector is

{f4} = 	

4A

1

ReP r


biTi + bjTj + bkTk

biTi + bjTj + bkTk

0


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
ciTi + cjTj + ckTk
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0




n

n2 (8.72)

It should be noted that both the flux and convective heat transfer boundary conditions are
treated by using the boundary integral, as discussed in the previous chapter. At higher
Reynolds numbers convection stabilization of Equation 8.70 is essential. This can be
achieved by introducing characteristic Galerkin method (Chapter 7).
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8.5 Forced Convection

Flow through packed beds are important in many chemical engineering applications. Gen-
erally, the grain size in the packed beds will vary depending on the application. As the
particle size increases, the packing close to the walls will become non-uniform, thereby
creating a channelling effect close to the solid walls. In such cases, the porosity value
can be close to unity near the walls, but will decrease to a free stream value away from
the walls.

In such situations, the ability to vary the porosity within the domain itself is essential
in order to obtain a correct solution. Although the theoretical determination of the near
wall porosity variation is difficult, there are some experimental correlations available to
tackle this issue. One such widely employed correlation, given by Berenati and Brosilow
(Berenati and Brosilow 1962), will be used, that is,

ε = εe

[
1 + exp

(
−cx

dp

)]
(8.73)

where εe is the free stream bed porosity taken to be equal to 0.39, and c is an empirical
constant (c = 2 for dp = 5 mm). In general, the problem in this case is formulated on the
basis of particle size dp, that is, the Reynolds number is based on the particle size.

Figure 8.4 shows the problem definition of forced flow through a packed bed. The inlet
channel width is 10 times the size of the grain. The length of the channel is 6 times that of

T = 0

Parabolic inlet
profile for u1 and u2 = 0

60

10

T = 1

u1 = u2 = 0

p = 0

Figure 8.4 Forced convection in a channel filled with a variable porosity medium. Geom-
etry and boundary conditions
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Figure 8.5 Forced convection in a channel. Comparison of the Nusselt number with exper-
imental data for different particle Reynolds numbers. Points—experimental (Vafai et al.
1984); dashed line—numerical (Vafai et al. 1984); solid—CBS

the inlet width. Zero pressure conditions are assumed at the exit. The inlet velocity profile
is parabolic and no-slip boundary conditions apply on the solid side walls. Both the walls
are assumed to be at a higher, uniform temperature than that of the inlet fluid temperature.
The analysis is carried out for different particle Reynolds numbers ranging from 150 to 350.
The quasi-implicit (QI) scheme with θ = 1, θ1 = 0 and θ2 = θ3 = 1 has been employed
to solve this problem. A non-uniform mesh with triangular elements was also used in the
analysis. The mesh is fine close to the walls, and coarse towards the centre. The total
number of nodes and elements used in the calculation are 3003 and 5776 respectively.

Figure 8.5 shows a comparison of the calculated steady state average Nusselt number
distribution on a hot wall with the available experimental and numerical data. The Nusselt
number is calculated as

Nu = hL

k
=
∫ L

0

∂T

∂x1
dx (8.74)

Figure 8.6 shows the difference between the generalized model and the Brinkman and
Forchheimer extensions for the velocity profiles close to the wall in a variable porosity
medium at steady state. As may be seen, the Forchheimer and Brinkman extensions fail to
predict the channelling effect close to the wall. While the Brinkman extension is insensitive
to porosity values, the Forchheimer model does not predict the viscous effect close to the
channel walls.

8.6 Natural Convection

The fluid flow in a variable porosity medium within an enclosed cavity, under the influence
of buoyancy, is another interesting and difficult problem to analyse. In order to study such
a problem, an enclosure packed with a fluid-saturated porous medium is considered. The
aspect ratio of the enclosure is 10 (ratio between height and width). All the enclosure
walls are subjected to ‘no-slip’ boundary conditions. The left vertical wall is assumed to
be at a higher, uniform temperature than that of the right side wall. Both the horizontal
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Figure 8.6 Forced convection in a channel. Comparison between the generalized model,
Forchheimer and Brinkman extensions to Darcy’s law

Table 8.1 Average hot wall Nusselt number distribution for natural convection in a vari-
able porosity medium, aspect ratio = 10

Fluid dp εe P r k∗ Ra Experimental Numerical CBS

Water 5.7 0.39 7.1 1.929 1.830 × 107 2.595 2.405 2.684
3.519 × 107 3.707 3.496 3.892

Ethyl 5.7 0.39 2.335 15.4 2.270 × 108 12.56 13.08 12.17
alcohol 3.121 × 108 15.13 15.57 14.28

walls are assumed to be insulated (Figure 8.7). The properties of the saturating fluid are
assumed to be constant, other than that of the density. The density variation is invoked by
the Boussinesq approximation.

Table 8.1 shows the steady state quantitative results and a comparison with the available
numerical and experimental data. These data were obtained on a non-uniform structured
61 × 61 mesh. The accuracy of the prediction can be improved by further refining the
mesh. An extremely fine mesh is essential near the cavity walls in order to predict the
channelling effect in this region. In Table 8.1, experimental data is obtained from reference
(Inaba and Seki 1981), and the numerical data for comparison is obtained from reference
(David et al. 1991). The following Nusselt number relation was used for this problem.

Nu = 1

L

∫ L

0

∂T

∂x
dx (8.75)
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Figure 8.7 Natural convection in a fluid-saturated variable porosity medium. Problem
boundary conditions

8.6.1 Constant porosity medium

Problems in which the variation in porosity is less significant normally occur in porous
media, which have small, solid particle sizes. For instance, thermal insulation is one such
example in which the variation in porosity near the solid walls is not important but
the uniform free stream porosity value can be very high. In order to investigate such
media, a benchmark problem involving buoyancy-driven convection in a square cavity has
been solved.

The problem definition is similar to the one shown in Figure 8.7, the difference being
that the aspect ratio is unity. The square enclosure is filled with a fluid-saturated porous
medium, with constant and uniform properties except for the fluid density, which is again
incorporated via the Boussinesq approximation. A 51 × 51 non-uniform mesh (Figure 8.8),
is employed for this problem.

The Darcy and non-Darcy flow regime classifications and the Darcy number limits have
been discussed by many researchers. One important suggestion was given in the paper by
Tong and Subramanian (Tong and Subramanian 1985). In Figure 8.9, we show the velocity
and temperature distribution at different Darcy and Rayleigh numbers. In this case, the
product of the Darcy and Rayleigh numbers is kept at a constant value in order to amplify
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Figure 8.8 Buoyancy-driven flow in a fluid-saturated porous medium. Finite element
mesh. Nodes: 2601, elements: 5000

the non-Darcy effects. It is clearly obvious that the maximum velocity in the Darcy flow
regime, at a Darcy number of 10−6, is located very close to the solid walls. The non-Darcy
velocity profile, at a Darcy number of 10−2, on the other hand, looks very similar to that
of a single-phase fluid, and the maximum velocity is located away from the solid walls. At
a Darcy number of 10−4, the flow undergoes a transition from a Darcy flow regime to a
non-Darcy flow regime. The temperature contours also undergo noticeable changes as the
Darcy number increases from 10−6 to 10−2.

Both the scheme and the model implementation have been designed in such a way that
as the Darcy number increases, the flow approaches a single-phase fluid flow, which is
evident from Figure 8.9

In Table 8.2, the quantitative results obtained from the above analysis (only for the
Darcy flow regime, Da < 10−5) are compared with other available analytical and numerical

Table 8.2 Average Nusselt number comparison with analytical
and numerical results

Ra∗ = RaDa Nu

Analytical Numerical1 Numerical2 CBS

10 – 1.07 – 1.08
50 1.98 – 2.02 1.96

100 3.09 3.09 3.27 3.02
500 8.40 – – 8.38

1000 12.49 13.41 18.38 12.52
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(a) Vector plot (b) Temperature

Ra = 108, Da = 10−6

(c) Vector plot (d) Temperature

Ra = 106, Da = 10−4

(e) Vector plot (f) Temperature

Ra = 104, Da = 10−2

Figure 8.9 Natural convection in a fluid-saturated porous, square enclosure. Vector plots
and temperature contours for different Rayleigh and Darcy numbers; Pr = 0.71
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Figure 8.10 Natural convection in a fluid-saturated constant porosity medium. Problem
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Figure 8.11 Natural convection in a fluid-saturated constant porosity medium within an
annular enclosure. Comparison of hot wall steady state Nusselt number with the experi-
mental and numerical data (Prasad et al. 1985)

results. As seen, the results are in excellent agreement with the reported results. In Table 8.2,
the analytical solution has been obtained from reference (Walker and Homsy 1978), ‘Numer-
ical1’ and ‘Numerical2’ have been obtained from references (Lauriat and Prasad 1989) and
(Trevisan and Bejan 1985) respectively.

It should be noted that the results by Walker and Homsy (Walker and Homsy 1978)
are analytical. The numerical results presented by Trevisan and Bejan (Trevisan and Bejan
1985) over-predict the results, which may be due to the coarse mesh employed.

In order to compare the present numerical results with experimental data, an axisymmet-
ric model was developed and a buoyancy-driven flow problem was studied. The boundary
and initial conditions are the same as for the previous problem, the main difference being
in the definition of the geometry. In this case, the geometry is an annulus with a radius
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ratio (ratio between outer and inner radii) of 5.338 (see Figure 8.10). The fluid used to
saturate the medium is water with a Prandtl number of 5. The results are generated for
different Grashof numbers (Ra/P r) and compared with the experimental Nusselt number
predictions as shown in Figure 8.11. In general, the comparison is excellent for the range
of Grashof numbers considered.

8.7 Summary

In this chapter, a brief summary of convection in porous media has been discussed. It
is important to fully understand the concepts given in Chapter 7 before carrying out the
porous medium flow calculations. Several details have deliberately not been included in
this chapter in order to keep the discussion brief. It is important that readers, who may be
interested in carrying out further research on the topic, read the books and papers listed in
the bibliography to further enhance their knowledge.

8.8 Exercise

Exercise 8.8.1 Write down the Darcy flow and heat convection equations for a fluid-
saturated porous medium at steady state.

Exercise 8.8.2 Derive the governing equations for flow and convection in a fluid-saturated
porous medium in cylindrical coordinates.
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9

Some Examples of Fluid Flow
and Heat Transfer Problems

9.1 Introduction

In this chapter, we discuss some solved examples of fluid flow and heat transfer problems.
First, the readers are made aware of the benchmark problems available to test their codes.
The second objective is to provide more experience to the readers in tackling problems
of their own interest. In addition to discussing the benchmark problems, we also provide
a few application problems in heat transfer. Only a brief discussion of the solution will
be provided for most of the problems considered. Isothermal flow (no heat transfer), non-
isothermal problems and a transient solution are included in this chapter.

9.2 Isothermal Flow Problems

Isothermal flow problems obviously do not involve heat transfer but are quite important in
testing and validating the fluid dynamics part of an algorithm or a developed code. Both
steady and unsteady isothermal flow problems are considered in the following subsections.

9.2.1 Steady state problems

Steady state problems are problems that are independent of time, and a solution to such
problems can be obtained using either the steady Navier–Stokes equations, along with an
appropriate implicit fluid dynamics solver (Taylor and Hughes 1981), or the unsteady state
Navier–Stokes equations and the appropriate time marching procedure (Donea and Huerta
2003; Gresho and Sani 2000; Löhner 2001; Zienkiewicz and Taylor 2000). Solutions to
all the fluid flow problems presented in this chapter are produced using the characteristic-
based-split (CBS) scheme, which is a time marching algorithm. Details of the CBS scheme

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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are available in Chapter 7. In this subsection, two important benchmark problems that
are commonly employed in testing codes will be discussed. In addition, a very recently
proposed benchmark test case will also be considered.

Flow in a lid-driven cavity

Flow in a lid-driven cavity is one of the most widely used benchmark problems to test steady
state incompressible fluid dynamics codes. Our interest will be to present this problem as a
benchmark for the steady state solution. The definition of the problem is given in Figure 9.1.
The geometry is a simple square enclosure with solid walls on all four sides. All the walls,
except for the top one, are fixed. The top wall is assumed to be moving with a given
velocity; therefore, the fluid attached to this wall also moves with the same velocity in the
direction shown in Figure 9.1. A pressure value of zero is forced at the node in the bottom
left-hand corner of the cavity as shown.

In order to demonstrate the influence of mesh density on the solution procedure, six
different meshes have been selected for this problem. We start with a very coarse mesh,
as shown in Figure 9.2(a), and refine uniformly by increasing the number of elements as
shown in the fourth mesh (Figure 9.2(d)). The fifth mesh is generated by refining the mesh
along the cavity walls and coarsening the mesh at the centre as shown in Figure 9.2(e).
The meshes shown in Figures 9.2(a) to (e) are all unstructured in nature. The sixth and
final mesh is a structured mesh of 100 × 100 uniform divisions, as shown in Figure 9.2(f).
At this point, the readers are reminded that a structured mesh gives better accuracy as
compared to an unstructured mesh for the same number of nodes.

A Reynolds number of 5000 is selected to demonstrate the influence of mesh refinement.
The initial values of the velocities at all inside nodes are taken as u1 = 1 and u2 = 0. The
pressure is assumed to be equal to zero at the beginning of the computation. The semi-
implicit form of the CBS scheme (see Chapter 7) was used to calculate the solution in
time for all the six meshes. Non-dimensional time step values, ranging between 10−3 and
10−2, were employed in the calculations. In order to achieve a steady state solution, the

p = 0

u1 = 1, u2 = 0

u 1
=

u 2
=

 0

u 1
=

u 2
=

 0

u1 = u2 = 0

Figure 9.1 Incompressible isothermal flow in a lid-driven cavity. Geometry and boundary
conditions
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(a) Mesh1, nodes:127, elements:211

(c) Mesh3, nodes:2909, elements:5163 (d) Mesh4, nodes:5139, elements:10,008

(f) Mesh6, nodes:10,201, elements:20,000(e) Mesh5, nodes:5515, elements:10,596

(b) Mesh2, nodes:485, elements:887

Figure 9.2 Linear triangular element meshes, (a–e) unstructured meshes, (f) 100 × 100
structured mesh
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calculation was continued until the maximum difference of the variables u1, u2 and p

between two consecutive time steps became less than 10−6. Other criteria, as discussed in
Chapter 7, could also have been employed to decide whether the steady state solution had
been reached.

In Figure 9.3, the pressure contours generated from all the meshes are shown. As seen,
the pressure contours are distinguished by large oscillations when the mesh was relatively

(a) Mesh1 (b) Mesh2

(c) Mesh3 (d) Mesh4

(e) Mesh5 (f) Mesh6

Figure 9.3 Isothermal flow in a lid-driven cavity. Pressure contours at Re = 5000
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(a) Mesh5 (b) Mesh6

Figure 9.4 Isothermal flow in a lid-driven cavity. Stream traces at Re = 5000

coarse (Figures 9.3(a) and (b)). These oscillations disappear from most of the domain as
the mesh is refined. The last two meshes (Figures 9.3(e) and (f)) result in much smoother
contours than for the other meshes. However, even the fine meshes give oscillatory solutions
close to the singular point at the top left corner of the cavity.

The stream traces of meshes five and six are shown in Figure 9.4. At a Reynolds
number of 5000, a secondary vortex appeared close to the bottom right-hand corner. In
general, it is difficult to predict this vortex, and very fine meshes are necessary if this is
to be achieved. Owing to the small size of the secondary vortex, the first four meshes
failed to produce its occurrence. However, the last two meshes (Figures 9.3(e) and (f))
were capable of predicting the secondary vortex as shown in Figure 9.4. In addition to this
small secondary vortex, the figure also shows the recirculating vortices at both the bottom
corners and close to the top left-hand corner.

The quantitative result selected for this study was the horizontal velocity component
distribution at the mid-vertical plane of the cavity. The horizontal velocity components
of all the meshes have been calculated and plotted as shown in Figure 9.5. It is obvious
that the first and second meshes result in inaccurate solutions because of insufficient mesh
resolution. However, from the third mesh onwards, sensible solutions were obtained. The
comparison of the computed solution with the available benchmark data shows that the
results obtained by the sixth mesh agreed excellently with the fine mesh solution of Ghia
et al. (Ghia et al. 1982). The third, fourth and fifth meshes also give solutions that were
close to that of Ghia et al. but were not identical.

The stream traces and pressure contours for Reynolds numbers of 400 and 1000 are
shown in Figure 9.6. These results were generated using the sixth mesh. A comparison of
the velocity profiles for the steady state solution is shown in Figure 9.7. The comparison
between the present solution and the benchmark solution of Ghia et al. (Ghia et al. 1982)
indicates excellent agreement. Further details may be obtained from references (Lewis
et al. 1995b; Malan et al. 2002; Nithiarasu 2003) and the readers are encouraged to com-
pute results for other Reynolds numbers. Several other papers on the lid-driven cavity are
available in the open literature but are not listed here for the sake of brevity.
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Figure 9.5 Incompressible isothermal flow in a lid-driven cavity. u1 velocity profile along
the mid-vertical line. Comparison with the benchmark steady state results of Ghia et al.
(Ghia et al. 1982)

Flow past a backward-facing step

The lid-driven cavity problem considered in the previous subsection was a good example
of flow inside an enclosed area. It is therefore appropriate to consider a problem in which
the fluid is allowed to enter from an inlet section and exit from an outlet section. A typical
case of such an example is the flow past a backward-facing step, which is widely employed
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(a) Stream traces, Re = 400 (b) Pressure contours, Re = 400

(c) Stream traces, Re = 1000 (d) Pressure contours, Re = 1000

Figure 9.6 Isothermal flow in a lid-driven cavity. Stream traces and pressure contours for
different Reynolds numbers
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Figure 9.7 Isothermal flow in a lid-driven cavity. Comparison of mid-vertical plane u1

velocity profiles for different Reynolds numbers with Ghia et al. (Ghia et al. 1982)
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u1 = u2 = 0 p = 0

L

2L

4L 36L

Parabolic u1 and u2 = 0

Figure 9.8 Incompressible isothermal flow past a backward-facing step. Problem defini-
tion and boundary conditions

by researchers in validating flow solvers. In addition to the available numerical solutions,
experimental data is also available for flow past a backward-facing step.

The problem definition is shown in Figure 9.8. The inlet is situated at a distance of 4L

upstream of the step, where L is the height of the step as shown in Figure 9.8. The inlet
section is twice as high as the step. The total length of the channel is taken to be equal to
40 times the height of the step. Apart from the inlet and exit, all the other boundaries are
assumed to be solid walls, in which no slip boundary conditions are assumed to prevail.
At the inlet to the channel, a nearly parabolic velocity profile of u1 was assumed. The
reason a perfect parabolic velocity profile was not taken is that the experimental data was
not available on a perfectly parabolic velocity profile. In order to compare the numerical
results with the available experimental data, we imposed the experimental inlet velocity
profile from the reference (Denham and Patrik 1974), which was not perfectly parabolic.
The u2 velocity at the inlet was assumed to be equal to zero at all times. The exit of the
problem was situated at a distance of 36 times the step height in order to make sure that the
disturbance created by the recirculation in the vicinity of the step was stabilized by the time
the flow reached the exit. At the exit, the pressure was prescribed as being equal to zero.

The Reynolds number, based on the average inlet velocity and step height, was taken
to be equal to 229 in order to compare the velocity profiles with the available experimental
velocity profile. The flow was assumed to be laminar and the computation was started with
an initial value of u1 equal to unity and u2 equal to zero. In addition to the velocity values,
an initial pressure value of zero was assumed at all nodal points.

Two different unstructured meshes were employed in the calculations. The first mesh
was generated by refining the regions close to the solid walls as shown in Figure 9.9(a).

(a)

(b)

Figure 9.9 Incompressible isothermal flow past a backward-facing step. Finite element
meshes. (a) Nodes:4656, elements:8662, (b) nodes:3818, elements:7155
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The second mesh was generated by adapting the mesh for the solution generated on a
coarse mesh (see reference (Nithiarasu and Zienkiewicz 2000) for details) as shown in
Figure 9.9(b). It should be observed that the adapted mesh is not fine in the region close
to the recirculation zone, and this may lead to inaccuracies in that region. However, the
use of unstructured meshes was preferred so that the flexibility of the method could easily
be proven.

In Figure 9.10, the results that were produced by the CBS scheme in its fully explicit
form are shown. Here, the use of local time-stepping techniques accelerated the solu-
tion towards the steady state as compared to a fixed global time step (Malan et al. 2002;
Nithiarasu 2003).

The u1 velocity and pressure contours generated by the two meshes are given in
Figures 9.10(a), (b), (c) and (d). In Figure 9.10 (e), the velocity profiles generated from

(a)

(b)

(c)

(d)
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Figure 9.10 Incompressible isothermal flow past a backward-facing step. (a) u1 veloc-
ity contours (mesh1), (b) pressure contours (mesh1), (c) u1 velocity contours (mesh2),
(d) pressure contours (mesh2) and (e) comparison of velocity profiles with experimental
data (mesh1), Re = 229
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the first mesh (Figure 9.9 (a)), at different sections of the geometry, are compared with the
experimental data of Denham et al. (Denham and Patrik 1974).

The u1 velocity contours (Figures 9.10(a) and (b)) are marked with the recirculation
pattern downstream of the step. This was the expected pattern in a problem of this nature.
The pressure contours are marked with minor oscillations, which was due to the unstructured
mesh used. The use of some form of artificial dissipation would eliminate these oscillations
but compromise the accuracy of the solution.

Double-driven cavity

As the name suggests, a double-driven cavity is different from the lid-driven cavity, dis-
cussed in the previous subsection, because of the way the double lids are used. In a
double-driven cavity, the lids are moved on both the top and the bottom sides of the cavity.
In order to study the effects of a double-driven action, the geometry shown in Figure 9.11(a)

L

u1 = 1, u2= 0

u1 = −1, u2 = 0

u1 = u2 = 0

u1 = u2 = 0
0.4L

L

0.4L

(a) Geometry and boundary conditions

(b) Uniform unstructured mesh, Nodes:18,717, elements:36,834

Figure 9.11 Incompressible isothermal flow in a double-driven cavity. Geometry and mesh
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was chosen. This problem was suggested as a benchmark by Zhou et al. (Zhou et al. 2003),
and it is a diagonally symmetrical enclosure with a longer side of size L and a smaller side
of size 0.4L. The top lid is assumed to move at a prescribed positive horizontal velocity and
the bottom lid moves with a negative velocity, with a magnitude equal to the velocity of
the top lid. The Reynolds number is defined on the basis of the magnitude of the prescribed
velocities at the top and bottom lids and the length L. If the semi-implicit form is used, a
minimum of one pressure value needs to be prescribed at one solid wall node.

Several meshes have been used in the analysis to obtain a mesh-independent solution.
The mesh shown in Figure 9.11(b) was found to be adequate to get an accurate solution.
All the solutions presented here were generated from the fine uniform unstructured mesh
of Figure 9.11(b).

(a) Re = 50

(c) Re = 400 (d) Re = 1000

(b) Re = 100

Figure 9.12 Incompressible isothermal flow in a double-driven cavity. u1 velocity con-
tours for different Reynolds numbers
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(a) Re = 50 (b)  = 100

(c) Re = 400 (d) Re = 1000

Figure 9.13 Incompressible isothermal flow in a double-driven cavity. u2 velocity con-
tours for different Reynolds numbers

Theoretically, the steady state solution, if one exists, should be symmetric with respect
to either of the diagonals. However, at higher Reynolds numbers, a steady state solution
may not exist as reported by Zhou et al. (Zhou et al. 2003).

Figures 9.12, 9.13 and 9.14 show the contours of all the three variables for different
Reynolds numbers. From these contours it is clear that the solution obtained was symmetric
with respect to the diagonals.

The u1 velocity contours in Figure 9.12 show the existence of strong u1 gradients close
to the top and the bottom lids. As the Reynolds number increases, this gradient increases
in strength as indicated by the closely packed contours near the top and the bottom lids
at Re = 400 and 1000. Also, at higher Reynolds numbers (Re = 400, 1000), stronger u1

gradients develop close to the inward corners of the enclosure.
The u2 velocity contours in Figure 9.13 show steeper gradients close to the corners

along the vertical walls. The pressure contours shown in Figure 9.14 are marked with very
high gradients close to the top and the bottom corners of the cavity. This was expected
because of the singularity introduced by the sudden change in the velocity at the top and
the bottom corners. A comparison of the unstructured mesh solution with the published
structured fine mesh solution (Zhou et al. 2003) is shown in Figure 9.15. It is clear that both
the finite element solution on unstructured meshes and the fine structured mesh solution
are almost identical.
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(a) Re = 50 (b) Re = 100

(c) Re = 400 (d) Re = 1000

Figure 9.14 Incompressible isothermal flow in a double-driven cavity. Pressure contours
for different Reynolds numbers

9.2.2 Transient flow

In this section, a widely used transient benchmark problem of periodic vortex shedding
behind a circular cylinder is briefly considered. The problem definition is simple and is
shown in Figure 9.16. A circular cylinder of diameter D is placed in a fluid stream with a
uniform approaching velocity. The computational domain inlet and exit are placed at lengths
of 4D upstream from the centre of the cylinder and 12D downstream from the centre of
the cylinder respectively. The top and bottom boundaries are situated at a distance of 4D

from the centre of the cylinder.
The inlet velocity was assumed to be uniform with a prescribed non-zero value for u1

and a zero value for u2 velocity components. On both the bottom and the top sides, the
normal velocity component u2 was assumed to be equal to zero. On the cylinder surface,
the no-slip condition of zero velocity components was applied. At the exit, the pressure
value was assumed to be constant. In this study, a zero value for pressure was assumed
at the exit. The inlet Reynolds number was defined on the basis of the free stream inlet
velocity and the diameter D of the cylinder.

A three-dimensional mesh was used in the vortex-shedding calculations. For three-
dimensional flow calculations, two additional boundary conditions are necessary on the
two additional surfaces at the front and the back (see Figure 9.17). The two additional
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(a) Re = 50 (b) Re = 100

(c) Re = 400 (d) Re = 1000

Figure 9.15 Incompressible isothermal flow in a double-driven cavity. Comparison of
horizontal velocity profile at mid-vertical section with Zhou et al. (Zhou et al. 2003) for
different Reynolds numbers
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Figure 9.16 Isothermal flow past a circular cylinder. Geometry and boundary conditions



SOME EXAMPLES OF FLUID FLOW AND HEAT TRANSFER PROBLEMS 279

(a) Finite element surface mesh (b) Instantaneous u1 velocity contours

Figure 9.17 Isothermal flow past a circular cylinder. Three-dimensional finite element
mesh and an instantaneous u1 velocity contour, Re = 100

surfaces were assumed to have no flow in the direction normal to the surfaces. Since the
two-dimensional problem was solved in three dimensions by introducing a third dimension,
the width of the domain in the third dimension is arbitrary. The smaller the size of the
domain in the third dimension, the smaller will be the number of elements in the mesh.
For the three-dimensional computations carried out here, the length in the third dimension
was assumed to be equal to 0.5D.

The three-dimensional surface mesh is shown in Figure 9.17(a). The volume mesh
used within the domain was generated using linear tetrahedral elements. A total number
of approximately 600,000 elements were used in the calculations. As may be observed,
the mesh is very fine behind the cylinder, along the expected von Karman vortex street.
This is essential in order to accurately predict the flow. A mesh convergence study in three
dimensions is time-consuming and difficult, and it is advisable to analyse many meshes
in order to prove the convergence of the results. Alternatively, if the problem has existing
results, then a comparison with these will give confidence about the results generated. Here,
we chose the alternative approach and compared our results with the existing data.

The calculation was carried out using the fully explicit form of the CBS scheme
(Nithiarasu 2003). The initial values of u1 and u2 were assumed to be equal to unity
and zero respectively. Note that these values are non-dimensional. All the velocity values
are non-dimensionalized using the reference inlet velocity value (see Chapter 7 for details).
Similarly, the distances are scaled with respect to the diameter of the cylinder. These scal-
ings result in a non-dimensional inlet velocity value of unity and a cylinder diameter of
unity in the non-dimensional space. The initial values of pressure were assumed to be zero
everywhere in the domain.

As mentioned previously, the solution to this problem is known to be periodic with
respect to time. Once the solution reaches a steady periodic state, the periodic vortex shed-
ding continues indefinitely. This process consists of vortex formation behind the cylinder
and shedding.
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Figure 9.18 Isothermal flow past a circular cylinder. Comparison of u3 velocity variation
at an exit point, Re = 100

In Figure 9.17(b), we show only a ‘snap shot’ of the u1 velocity distribution at a certain
non-dimensional time. Several such ‘snap shots’ can be plotted but, for the sake of brevity,
only one sample solution is given. Obviously, this restricts the discussion on the physical
nature of the problem. Since this is an established test case, readers can find sufficient
details from other works. We, however, provide the distribution of u3 with respect to time
at an exit point of the domain in Figure 9.18. The exit point is selected at the domain
horizontal centre line on the exit plane. As anticipated, the velocity at the selected exit
point undergoes a steady periodic change with respect to time after establishing a steady
periodic pattern. The initial period of the solution process (up to a non-dimensional time
of about 20) is marked with no sign of any periodic behaviour of the velocity at the exit.
The periodic behaviour starts between non-dimensional times of 20 and 30 and establishes
a steady periodic pattern between the non-dimensional time of 40 and 50. The peak values
remain the same after establishing a steady pattern. The initial flow pattern depends heavily
on the initial values of the variables, the time steps and the mesh used. It is therefore obvious
that the results using different schemes do not match at all times from the beginning of
the computation. However, once a steady periodic pattern is established the results should
agree as shown in Figure 9.18. The solution used in the comparison was generated from
an adaptive analysis in two dimensions by de Sampaio et al. (de Sampaio et al. 1993).

9.3 Non-isothermal Benchmark Flow Problem

Non-isothermal flow problems involve a solution for the energy equation in addition to the
momentum and continuity equations. If the flow problem is a forced convection problem,
the momentum and energy equations are uncoupled and should be solved as such. In other
words, the momentum and continuity equations may be solved first to establish the velocity
fields and then, using the established velocity field, the temperature field can be computed.
However, in natural and mixed convection problems, coupling does exist between the
momentum and the energy equations via a buoyancy term that is added to the momentum
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equations in the gravitational direction. In this section, we will consider a forced heat
convection problem in the downstream portion of a backward-facing step. For coupled
natural and mixed convection problems, the readers are referred to Chapter 7.

9.3.1 Backward-facing step

The problem definition is similar to the isothermal flow past a backward-facing step as
discussed in the previous section, the difference being that additional boundary conditions
are prescribed for the temperature field. The boundary conditions discussed in reference
(Kondoh et al. 1993) will be adopted. The solid downstream bottom wall was assumed to
be at a higher temperature than the fluid (results presented here are for air with Pr = 0.71)
entering the channel. All other solid walls were assumed to be insulated. All other boundary
conditions for the velocity and pressure values are the same as the ones discussed for the
isothermal problem in the previous section and are repeated in Figure 9.19.

Three different meshes have been employed to make sure that the solutions presented
are accurate. The first mesh used was mesh (a) in Figure 9.9. The second and third meshes
are finer than the first mesh and are shown in Figure 9.20.

A maximum Reynolds number of 500 was studied. All three meshes were employed to
study the heat transfer at this Reynolds number. The local Nusselt number distribution on
the hot wall downstream of the step is shown in Figure 9.21. As seen, the Nusselt number

T = 1

p = 0

L

2L

4L 36L

u1 = u2 = 0

Parabolic u1 and u2 = 0, T = 0

Figure 9.19 Forced convection heat transfer downstream of a backward-facing step.
Geometry and boundary conditions

(a) Mesh2, nodes:8131, elements:15,410

(b) Mesh3, nodes:11,659, elements:22,257

Figure 9.20 Forced convection heat transfer downstream of a backward-facing step.
Unstructured meshes
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Figure 9.21 Forced convection heat transfer downstream of a backward-facing step. Local
Nusselt number distribution on the hot wall for a Reynolds number of 500 on different
meshes

difference between all the three meshes was very small. Therefore, the second mesh was
used in all the calculations in order to save computational time, as the difference between
the local Nusselt number distribution of the finest mesh (third mesh) and the second was
very small. The small oscillations in the local Nusselt number distribution, especially on
the first mesh, was generated by the coarseness of the unstructured meshes.

(a) Re = 100, flow reattachment length from the inlet = 10.23

(b) Re = 200, flow reattachment length from the inlet = 14.63

(c) Re = 300, flow reattachment length from the inlet = 18.12

(d) Re = 500, flow reattachment length from the inlet = 22.92

Figure 9.22 Forced convection heat transfer downstream of a backward-facing step. Tem-
perature contours at different Reynolds numbers
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Figure 9.23 Forced convection heat transfer downstream of a backward-facing step. Local
Nusselt number distribution on the hot wall for different Reynolds numbers

Figure 9.22 shows the temperature contours for all the different Reynolds numbers
considered. Previous studies indicate that the maximum heat transfer occurred close to
the reattachment length. The incompressible flow is attached to the wall from the inlet
until it reaches the step. The flow is detached from the bottom wall and recirculation
develops downstream of the step as shown previously for the non-isothermal case. The
flow reattaches itself to the bottom wall after the recirculation in the downstream portion
of the step. The location at which the reattachment takes place varies with the Reynolds
number. The higher the Reynolds number, the farther will be the reattachment point from
the step. The reattachment distances from the step are given in Figure 9.22. These values
are in close agreement with reported results (Kondoh et al. 1993).

The thermal action predominantly takes place downstream of the step in the bottom
portion of the channel. It may be observed that as the flow approaches the reattachment
point, the thermal boundary layer shrinks indicating a stronger temperature gradient in the
vicinity of the reattachment point and thus a higher heat transfer rate taking place close to
this point. This is clearly demonstrated in Figure 9.23 in which the local Nusselt number
is plotted along the hot wall downstream of the step. The local Nusselt number starts with
an almost zero value at the corner close to the step and increases smoothly to a maximum
value close to the reattachment point and then drops. It appears that the peak Nusselt
number value is calculated close to, but just after, the reattachment point. After reaching
the peak value, the local Nusselt number drops as the flow approaches the exit.

9.4 Thermal Conduction in an Electronic Package

Electronic packages (EP) are the integrated circuit (IC) carriers called components that are
used in the boards of all electronic systems. EP protect IC chips from a hostile environment,
communicate with other circuit boards and enhance the heat dissipation during operation.

In this section, an investigation has been carried out to find the thermal performance
of an electronic package, which is represented normally by the thermal resistance between
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the chip (location of the maximum temperature) and the ambient, referred to as Rja and
defined as

Rja = Tj − Ta

P
(9.1)

where Tj is the chip temperature, Ta is the ambient temperature and P is the power
dissipated by the chip.

The analysis was carried out for a 106 Plastic Ball Grid Array (PBGA) package system
using a 3-D analysis. Figure 9.24 shows a quarter model of a PBGA package, whereas
Figure 9.25 shows the inside details of the same package. The amount of heat that can be
dissipated within the package depends on the package attributes and also on the equipment
operating conditions.

The analysis was carried out using the commercial package ANSYS. A quarter model
of the PBGA was modelled because of the two axes of symmetry and was meshed using
a free meshing technique. The mesh of the PBGA is shown in Figure 9.26. The boundary
conditions created for the thermal analysis of the PBGA are as follows: (a) Chip power
(0.75 Watt) was given as the volumetric heat source. (b) Convection from the outer sur-
face of the package (h = 10 W/m2 K, Ta = 21◦C) (c) Temperature restraint on the bottom
surfaces (board temperature assumed to be 53◦C because several packages were mounted
on the board).

Figure 9.24 Quarter PBGA package model

Mold
Die
Die attach

Die pad
BT epoxy

Solder mask
Solder balls

Motherboard

Figure 9.25 Detailed model of PBGA
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Figure 9.26 Element model of PBGA

51.679 52.419 53.16 53.9 54.641 55.382 56.122 56.863 57.603 58.344

Figure 9.27 Temperature distribution of quarter PBGA model

The analysis was carried out for a free convection environment. The temperature distri-
bution of the package can be obtained by plotting nodal solution contours. The results are
shown in Figures 9.27 and 9.28 for a quarter model and an expanded full model and indi-
cate that the maximum temperature occurs in the chip itself. Since the board temperature
has been specified, the thermal resistance between the chip and the board Rjb is given by

Rjb = Tj − Tb

P
= 58.344 − 53

0.75
= 7.125 ◦C/W (9.2)

where Tj = 58.334◦C was obtained from the analysis.
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Figure 9.28 Temperature distribution of expanded full model

In a similar way, we can calculate the resistance between the board and the ambient,
given by Rba and defined as

Rba = Tb − Ta

P
= 53.0 − 21

0.75
= 42.67 ◦C/W (9.3)

where Tb is the board temperature. The resistance between the chip and ambient, Rja, is
obtained by adding Rjb to Rba, that is,

Rja = Rjb + Rba = 7.125 + 42.67 = 49.795 ◦C/W (9.4)

9.5 Forced Convection Heat Transfer From Heat Sources

The modern design for the electronic cooling of a printed circuit board (PCB) utilizes numer-
ical techniques in order to study varying situations (Bar-Cohen et al. 2001; Nakayama et al.
2001; Shidore et al. 2001; Watson et al. 2001). Most numerical simulations are performed
using commercial codes; however, as the geometries involved in this type of application
become increasingly more complicated, then commercial codes have deficiencies in both
accuracy and speed. For this reason, simplified models have usually been employed, which
are inadequate in predicting the heat transfer with sufficient accuracy. An alternative method
of calculating the flow through an electronic device is to approximate the device as a porous
device and to investigate the overall heat being transferred from the medium to the fluid
(Heindel et al. 1996; Zhao and Lu 2002). However, this approach has not been characterized
properly and more work is needed to understand the comparison between macroscopic and
microscopic approaches to the solution of porous medium flows (Nakayama and Kuwahara
2000). In the meantime, the latest developments in numerical schemes for the solution of the
complete Navier–Stokes equations can be employed in order to improve the thermal design of
electronic packaging. Of all the numerical techniques, the finite element method seems to be
the most flexible for the solution of complicated geometries (Zienkiewicz and Taylor 2000).
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Recently, a fully explicit version of the CBS algorithm has been widely employed for both
isothermal and non-isothermal flow problems (Nithiarasu 2003; Nithiarasu et al. 2004). In
this form, the algorithm was proven to be both accurate and efficient when using unstructured
meshes. In fact, for three-dimensional problems, such as those encountered in the present
study, the unstructured mesh-based explicit CBS solver is an excellent choice. Although struc-
tured and semi-unstructured meshes are widely employed in the solution of incompressible
flows, the use of unstructured meshes is inevitable if the geometry is really complex.

The problem considered in this section concerns the simulation of heat and fluid flow
over an array of hot spherical solids resembling solder balls projecting out from a PCB
(Nithiarasu and Massarotti 2004). Two different arrangements, 25 in-line (5 × 5 equally
spaced) and 41 staggered partial spheres are analysed. The solder balls are considered to
be partial spheres, whose centres lie on the same plane (x − z) as shown in Figure 9.29.

16D

19D

6DInflow

1D

y x

z

D

D
D

D D

D

0.35D

(a) Geometry

(b) Staggered arrangement

Figure 9.29 Forced convection heat transfer from spherical heat sources mounted on
the wall
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This arrangement is obtained by cutting the spheres with the horizontal wall (board) on
which the balls are placed. The diameter of the spheres is considered to be equal to 1,
and the distance between the ball centres and the plane that represents the circuit board
is equal to 0.35, as can be seen from Figure 9.29(a). Figure 9.29 also shows the sketch
of the staggered arrangement considered (Figure 9.29(b)). This is obtained by introducing
another partial sphere at the centre of the space between the four in-line spheres.

The flow is assumed to enter the channel from a vertical section (plane y − z), which
is placed at a distance of six diameters upstream of the centres of the first column of
spheres (Figure 9.29(a)). The velocity at the inlet is assumed to be constant at a value of
unity, but its direction (angle of attack) has been allowed to vary. The flow direction at
the inlet section, although always parallel to the vertical sides of the domain (x − y plane),
has been varied with respect to the x − z plane as shown in Figure 9.30. Three different
inlet directions have been studied with 0◦, 10◦ and 20◦ angles of attack with respect to the
x − z plane.

In all the cases considered, no-slip velocity boundary conditions were assumed for the
horizontal bottom wall and the solder ball surfaces. All the other surrounding boundaries
were assumed to be far field (inlet and exit). In addition to the above flow conditions,
varying thermal conditions were prescribed on the different boundaries. The solder ball
surfaces were always assumed to be at a temperature higher (T = 1) than that of the
incoming fluid (T = 0). All the side boundaries were assumed to be adiabatic and at the
exit, free conditions were assumed (no temperature boundary conditions).

The domain presented in both the staggered and in-line configurations, has been sub-
divided into an unstructured mesh using a Delaunay mesh generator (Morgan et al. 1999;
Weatherill et al. 2001). As may be seen, all meshes are refined near the solid walls where
strong gradients exist. The meshes used contained 250,372 nodes and 1,398,845 elements
for the in-line arrangement and 237,911 nodes and 1,309,963 elements for the staggered
arrangement. These grids were found to be satisfactory from a computational point of
view after an appropriate mesh sensitivity analysis. Figure 9.31 presents an example of the

Top horizontal wall = symmetry/inlet conditions

Bottom horizontal wall = no-slip conditions
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Figure 9.30 Forced convection heat transfer from spherical heat sources mounted on the
wall. Angles of inclination
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Figure 9.31 Forced convection heat transfer from spherical heat sources mounted on the
wall. Surface mesh of an in-line arrangement

surface mesh used for the in-line arrangement. The bottom adiabatic wall, in which the
no-slip boundary conditions are assumed, is refined near the spheres. For the staggered
arrangement, the same density of nodes is assumed, and this results in a smaller number
of nodes and elements.

The results are mainly presented in terms of the heat transfer and fluid flow quantities
of interest. The non-dimensional heat transferred from the spheres to the fluid has been
calculated from the computed temperature distribution. In particular, the average Nusselt
number for each sphere, Nus , is obtained by using the following integral:

Nus = 1

As

∫
A

(Nus)p dA = 1

As

∫
A

∇T · n dA = 1

As

∫
A

∂T

∂n
dA (9.5)
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where As represents the surface area of each solder ball (s = 1, . . . , 25 for in-line and
s = 1, . . . , 41 for staggered arrangements) and n represents the value of the outgoing
normal at each triangular face on the surface of the spheres. The integral term written
above has been calculated numerically by summing the constant (linear elements) values
of the gradient at each surface element multiplied by its area. The values of the Nusselt
number, Nus , have been calculated for each and every sphere, which are used in both the
in-line and the staggered arrangements, and comparisons are made for different Re and θ .

The isotherms calculated on a horizontal plane surface on which the balls are placed
are presented in Figure 9.32 for the in-line arrangement (top view). This diagram shows
the isotherms for Reynolds numbers of 100 to 300 and for different flow angles imposed
at the inlet of the computational domain. In this case, the value of the Reynolds number is
based on the diameter of the spheres.

With a zero angle of attack, the isotherm distribution looks simple and uniform in the
flow direction and convection from the ball cluster in the lateral direction is confined to a
thermal boundary layer close to the cluster. However, as the angle of attack is increased,
the isotherms spread to a wider area around the cluster and show a stronger convective
mixing. At higher angles of attack, the isotherms spread out and reach the side boundaries.
This behaviour is seen to enhance further as the Reynolds number is increased. It may be
observed that the symmetry, with respect to the central row of spheres, is preserved for all
the considered angles of attack and Reynolds numbers.

(a) q = 0°, Re = 100

(d) q = 10°, Re = 100 (e) q = 10°, Re = 200 (f) q = 10°, Re = 300

(g) q = 20°, Re = 100 (h) q = 20°, Re = 200 (f) q = 20°, Re = 300

(b) q = 0°, Re = 200 (c) q = 0°, Re = 300

Figure 9.32 Forced convection heat transfer from spherical heat sources mounted on the
wall. Temperature contours from the in-line arrangement for different inclination angles
and Reynolds numbers
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(a) q = 0°, Re = 100

(d) q = 10°, Re = 100 (e) q = 10°, Re = 200 (f) q = 10°, Re = 300

(g) q = 20°, Re = 100 (h) q = 20°, Re = 200 (f) q = 20°, Re = 300

(b) q = 0°, Re = 200 (c) q = 0°, Re = 300

Figure 9.33 Forced convection heat transfer from spherical heat sources mounted on the
wall. Temperature contours from the staggered arrangement for different inclination angles
and Reynolds numbers

Figure 9.33 shows the temperature contours for the staggered arrangement (top view)
at different values of Re and angles θ of the inlet flow. It is seen that close packaging
reduces the fluid penetration and thus the convection of the temperature in the vicinity
of the cluster. In fact, the temperature gradients in the zone occupied by the balls are
almost nil, and this is shown by the uniformity of the isothermal area at the centre of
the packaging. The flow encounters several columns of balls in a staggered arrangement
and therefore decelerates drastically after the first column. By increasing the velocity of
the fluid (Reynolds number), it is obviously possible to increase the temperature gradients
between the balls and the cooling fluid. As shown in Figure 9.33, for an angle of 0◦, the
cooling fluid penetrates further into the packaging as the velocity increases. However, this
is achieved at the cost of a large increase in the energy necessary to speed up the fluid. As
for the case of the in-line arrangement, the fluid penetration increases with both Reynolds
number and angle of attack. For the same intensity of fluid penetration into the cluster, the
staggered arrangement needs a much higher Reynolds number and angle of attack than that
of the in-line arrangement.

Before discussing the surface Nusselt number variation over the heat sources, it is
useful to define some keywords in order to identify the heat sources. Figure 9.34 gives
some definitions in order to explain the Nusselt numbers. These keywords will be referred
to in the following paragraphs.

In Figure 9.35, the average Nusselt number is presented for the central and the lateral
rows of balls for in-line arrangement (refer to Figure 9.34 for ‘lateral’ and ‘central’ rows).
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Figure 9.34 Forced convection heat transfer from spherical heat sources mounted on
the wall

It should be noted here that the average Nusselt number for the spheres in the row between
the ‘central’ and the ‘lateral’ rows is not presented in Figure 9.35 because it is practically
the same as the Nusselt number values for the ‘central’ row. From Figure 9.35, it is clear
that a significant drop in heat transfer from the solder balls occurs after the first column. A
more uniform reduction in heat transfer occurs from the balls further towards downstream.
This is obviously due to the flow obstruction caused by the columns of balls in the front
region. However, this effect tends to decrease after the third column. In fact, the fourth and
the fifth columns have practically the same values of Nu. As expected, the heat transfer
rate from the lateral rows is much higher than that of the central rows. At lower Reynolds
numbers and higher angles of attack, however, the difference between the Nusselt numbers
for the ‘central’ and ‘lateral’ rows is very small. In general, an increase in the flow angle
increases the heat transfer rate, which is due to the increase in participation of the balls at
the middle of the cluster. This effect becomes more prominent, especially for higher values



SOME EXAMPLES OF FLUID FLOW AND HEAT TRANSFER PROBLEMS 293

0

2

4

6

8

N
u

0

2

4

6

8

N
u

0

2

4

6

8

N
u

100 - Central
100 - Lateral
200 - Central
200 - Lateral
300 - Central

300 - Lateral

1st 2nd 3rd 4th 5th

Column

1st 2nd 3rd 4th 5th

Column
(c) q = 20°, inline

1st 2nd 3rd 4th 5th

Column
(a) q = 0°, inline (b) q = 10°, inline

Re Row
100 - Central
100 - Lateral
200 - Central
200 - Lateral
300 - Central

300 - Lateral

Re Row

100 - Central
100 - Lateral
200 - Central
200 - Lateral
300 - Central

300 - Lateral

Re Row

Figure 9.35 Forced convection heat transfer from spherical heat sources mounted on the
wall. Average Nusselt number distribution for in-line arrangement at different inclination
angles and Reynolds numbers

of Re. This information about the influence of the angle of attack can be very useful in this
type of application, in which the central part of the electronic device tends to be the hottest.

The average Nusselt number variation for different Reynolds numbers and flow angles
for the staggered arrangement of the solder balls is shown in Figure 9.36. In these figures,
the x-axis represents the column numbers of the ball clusters. For all legend details, refer
to Figure 9.34. The symbols used for the ‘central’ and the ‘lower’ rows are identical, as
the balls from these rows do not fall onto the same column. For example, the ‘central’ row
balls fall onto the columns with odd numbers but the ‘lower’ rows fall onto the columns
with even numbers.

As for the in-line arrangement, the average Nusselt number obtained is smaller for the
balls at the centre of the cluster. The front column, as expected, gives the highest heat
transfer rate. As the angle of attack of the incoming flow is increased, the participation
of the balls within the cluster increases, thus influencing the heat transfer. However, the
Nusselt numbers calculated are much smaller than that of the in-line arrangement for the
same Reynolds number and angle of attack.
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Figure 9.36 Forced convection heat transfer from spherical heat sources mounted on the
wall. Average Nusselt number distribution for staggered arrangement at different inclination
angles and Reynolds numbers

9.6 Summary

In this chapter, the problem-solving capabilities of the finite element method have been
demonstrated. The emphasis of the chapter has been on the use of unstructured meshes
to prove the flexibility of the finite element method. Occasionally, structured meshes were
used for the purposes of comparison. The readers should use this chapter as a starting
point for problem-solving exercises, for which purpose several benchmark problems and
a few applications have been given. The CBS flow code may be used to further enhance
an understanding of the finite element method, heat transfer and fluid flow problems. This
chapter should form a basis for researchers and students who want to further explore
engineering heat transfer problems.

9.7 Exercise

Exercise 9.7.1 In this exercise, you are asked to make appropriate assumptions and model
flow past the heat exchanger tubes as shown in Figure 9.37.
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Figure 9.37 Schematic diagram of a cross flow heat exchanger, d = 1, B = 8, D = 6,
pitch = 3, L = 42

A schematic diagram of a typical cross flow heat exchanger arrangement is shown in
Figure 9.37. As seen, the hot working fluid from the industry is passed through tubes and
the coolant is pumped from the bottom and used to cool the working fluid. In this particular
heat exchanger, the tubes are arranged in a staggered style.

The flow and heat transfer analysis over these tubes is very important in determining
an optimal tube arrangement. Neglecting the outer wall effects, carry out a heat transfer
analysis at a Reynolds number of 300. Assume that the flow is laminar and the buoyancy
effects are negligibly small.

Assume that the vortex-shedding effects can be neglected and simplify the three-
dimensional problem to a two-dimensional problem. Set up the appropriate boundary con-
ditions, generate the mesh and carry out the analysis either using the CBS flow code or any
other available software.

Exercise 9.7.2 In this exercise, you are asked to simulate the liquid flow through a liquid
processing plant as shown in Figure 9.38.
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Figure 9.38 Schematic diagram of water processing plant, inlet/exit channel height = 1,
L1 = 4, L2 = 5, L3 = 4, L4 = 6, L5 = 30

In the liquid processing industry, liquid is passed through several tanks as shown in
Figure 9.38. The diagram shows a simplified model of such a plant. With appropriate
assumptions, simplify the problem further and determine the flow mechanism. The raw liq-
uid is pumped into the plant from the left-hand side at a Reynolds number of 400, which is
based on the width of the inlet channel and inlet velocity.

Include appropriate assumptions and formulate a simplified physical problem. The sim-
plification should be in such a way that the model should not lose accuracy and at the same
time should not be very expensive to solve. Discuss the project and design the boundary
limits and conditions.

Once the problem has been simplified to two dimensions, generate a mesh and solve
the problem using the CBS flow solver. Determine the temperature distribution if the bottom
surface of the tank is hotter than the incoming fluid. Neglect the buoyancy effects and assume
the liquid is water in the heat transport problem.

Exercise 9.7.3 A two-dimensional square enclosure (all solid walls) filled with air is sub-
jected to a linearly varying temperature on one of its vertical walls (say T = (x2/L)Tmax ,
where L is the characteristic dimension) and a constant temperature on the other vertical
wall, which is less than that of Tmax . If the horizontal walls are assumed to be adiabatic,
obtain solutions for the flow and heat transfer inside the enclosure for different Rayleigh
numbers. Refer to Chapter 7 for non-dimensional scales.

Exercise 9.7.4 In the above problem, if the linear variation of temperature is replaced with
a constant heat flux, determine the temperature and flow patterns.
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10

Implementation of Computer
Code

10.1 Introduction

In this chapter, a brief introduction is given regarding the implementation of the com-
puter code. It is assumed that the readers are familiar with Fortran programming (Smith
and Griffiths 1998; Wille 1995). The whole chapter is based on the CBS scheme and the
time-stepping algorithm discussed in the previous chapters. The discussion is limited to the
essential aspects of the CBSflow code. However, the discussion on the pre- and postprocess-
ing technique is common to many other schemes. Although CBSflow is a heat convection
code, heat conduction may also be solved if the velocity calculations are suppressed.

The following discussion will be limited to linear triangular elements, which has already
been covered in detail in Chapters 3 and 7. The CBS and conduction codes may be downloaded
from the authors’ web pages (email: P.Nithiarasu@swansea.ac.uk). The basic source codes
for simple mesh generation and analysis are freely available for the readers to carry out
two-dimensional studies1.

In general, all the numerical programs contain three parts, that is, preprocessing, the
main processing unit and postprocessing. The preprocessing part includes mesh generation,
data structure and most of the element-related data, which are constant for an element. The
main processing unit is responsible for the computational effort and often most of the com-
puting (CPU) time during a calculation. Efficient programming can reduce the CPU time,
which is especially important in three dimensions. The details of an efficient data struc-
ture are not discussed here, but readers may obtain information on such issues in various
other relevant items of literature (Löhner 2001). In this chapter, the basic implementa-

1All the source codes available from the authors are copyrighted to the authors who developed the code. None
of the material available within the code should be reproduced/copied in any form for commercial purposes without
the written permission of the author of the source codes. Readers are expected to acknowledge by citing the book
in their publications if the full/part of the code is used for producing results.

Fundamentals of the Finite Element Method for Heat and Fluid Flow R. W. Lewis, P. Nithiarasu and K. N. Seetharamu
 2004 John Wiley & Sons, Ltd ISBNs: 0-470-84788-3 (HB); 0-470-84789-1 (PB)
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tion procedures are given so that the readers can understand the basics of the computer
implementation of the finite element method.

The final part of a finite element code is the postprocessing unit. This unit can either
be a coupled postprocessor, which directly gives the solution in graphical form or may
be linked to an external postprocessor via an interface. The latter option is chosen in this
text and the readers can then prepare their own interface and link to a postprocessing unit.
Often, it is necessary to extract data along a line within a domain. In such a situation, one
can either use other available software or employ an interpolation routine to compute the
data along an arbitrary line or at a point.

The CBSflow code has been used for various applications in the past (Nithiarasu 2000).
The overall procedure of time-stepping the CBSflow code for thermal problems can be
summarized as

call preprocessing ! preprocessing
do itime = 1,ntime ! time loop

call timestep ! time-step calculation
call step1 ! intermediate momentum
call step2 ! pressure calculation
call step3 ! momentum(velocity) correction
call step4 ! temperature calculation
call check ! check for steady state

enddo !
call postprocessing !postprocessing (output)

More details are given in the following sections.

10.2 Preprocessing

As mentioned previously, the preprocessing operation normally takes place before the main
solution unit. Often, the mesh generation section is kept separate from the rest of the routines
in order to simplify the data preparation. Such an approach is followed here and the mesh
generation algorithm is kept separate from the rest of the program.

10.2.1 Mesh generation

As mentioned in previous chapters, there are two main types of meshes, namely, structured
and unstructured meshes. Structured meshes are generally simple in form and follow a
certain pattern, which may either be uniform or non-uniform. Alternatively, unstructured
meshes follow no particular pattern and are generated by dividing a domain into an arbitrary
number of triangles or other finite element shapes. Since unstructured meshes follow no
fixed pattern, the control of the solution accuracy in those sections of the domain that
are dominated by high gradients is difficult. Structured meshes, on the other hand, result
in more accurate solutions. However, the generation of a structured mesh for a complex
geometry, especially in three dimensions, is both time-consuming and difficult. Therefore,
unstructured meshes, which are generated by a suitable unstructured mesh generator, will
be used in this text.
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Figure 10.1 A typical unstructured mesh

There are several methods available for generating unstructured meshes. Two of the
most prominent methods are the ‘advancing front’ (Löhner 2001; Löhner and Baum 1992;
Peraire and Morgan 1997; Peraire et al. 1987) and ‘Delaunay triangulation’ (Kumar et al.
1997; Lewis et al. 1995; Thompson et al. 1999; Weatherill et al. 1994) techniques. Most
of the unstructured meshes used in this book are generated by either one of these methods.
Controlling the quality of elements for example the aspect ratio, is much easier in the
Delaunay approach than in the advancing front method.

It is a common practice to store finite element data in terms of the nodal coordinates
and element connectivity. In addition to these, some convenient form of boundary condition
specification is also necessary. It is therefore important that a mesh generator enables the
coordinates of discrete points, the nodal connectivity of the finite elements and some form
of boundary node/side information. A typical mesh is shown in Figure 10.1 and the typical
input from a mesh generator is given by

no of nodes, no elements and no of boundary sides
9 9 7
Element number and connectivity
1 7 8 6
2 6 8 5
3 8 4 5
4 1 8 7
5 1 9 8
6 9 4 8
7 2 9 1
8 2 3 9
9 9 3 4
Node number and xy-coordinates
1 1.1 1.2
2 1.6 0.0
3 3.3 0.1
4 3.4 1.9
5 2.1 3.3
6 0.4 3.0
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7 0.0 1.0
8 1.8 2.1
9 2.3 1.1
Boundary side nodes and elements, boundary condition code
1 2 7 1
2 3 8 1
3 4 9 1
4 5 3 1
5 6 2 2
6 7 1 2
7 1 4 2

In the above mesh data, the total number of linear triangular elements is 9, the number
of nodes is also 9 and the number of boundary sides is 7. The element connectivity of all
the elements is numbered in an anticlockwise direction. The node numbering follows no
particular pattern. For simply connected domains, the outer boundary sides are numbered
in an anticlockwise direction, and in a multiple connected domain, the inner boundary is
numbered in a clockwise direction.

The above-mentioned data structure of the element connectivity and the boundary side
numbering are essential to make sure that the areas of the triangular elements are pos-
itive and that the appropriate boundary normals are determined from the boundary side
data.

Note that the boundary condition code, that is, the last column in the boundary side
data, is used to represent an appropriate boundary condition on a side. For example, 1 in
the above data can be used to represent an inlet condition and 2 may be used to represent a
solid wall condition (no-slip). The third column in the boundary side data is the element to
which the corresponding side belongs. This information is useful in evaluating the boundary
integral terms and helpful in applying Neumann boundary conditions. The above data are
normally prepared by a mesh generator, and once available, these data may be read into
the main analysis code by the following arrays:

intma(i,j) - Connectivity array. i = 1,2,3
and j = 1,2...number of elements
coord(i,j) - Coordinates array. i = 1,2
and j = 1,2 ... number of nodes.
isido(i,j) - Boundary side array. i=1,2,3,4
and j = 1,2, ..number of boundary sides.

10.2.2 Linear triangular element data

As mentioned before, only linear triangular elements will be considered in this chapter.
The essential data, including the mesh data and any other relevant data, are read from
various input files at the preprocessing stage. Once all the external data are available, the
remaining preprocessing procedure is carried out by the program. Some of the important
preprocessing aspects of the finite element program are given in the following subsections.



IMPLEMENTATION OF COMPUTER CODE 303

k

i

j

Figure 10.2 A triangular element

10.2.3 Element size calculation

The areas of the triangular elements are necessary for any finite element calculation, and
these areas are constant if the mesh is unchanged throughout the analysis. With reference
to Figure 10.2, the area of an element may be determined from the following expression:

A =
∫

dx1 dx2 = 1

2

∣∣∣∣∣∣
1 x1i x2i

1 x1j x2j

1 x1k x2k

∣∣∣∣∣∣ (10.1)

Note that i, j and k are the nodes and the subscripts 1 and 2 indicate the coordinate
directions. A sample routine that calculates the area of the elements and the derivatives of
the shape functions is given below.

c-----------------------------------------------------------------
subroutine getgeo(mxpoi,mxele,npoin,nelem,coord,intma,geome)

c-----------------------------------------------------------------
c Derivatives of shape functions and 2A are calculated and

c stored in the array geome(7,mxele). First six entries are

c derivatives of the shape functions and the last one

c (seventh) is two times the area of an element

implicit none

integer mxpoi, mxele, npoin, nelem,ielem, inode, in

integer intma(3,mxele)

real*8 x21,x31,y21,y31,rj,rj1,xix,xiy,etx,ety
real*8 rnxi,rnet

real*8 geome(7,mxele), coord(2,mxpoi)
real*8 x(3),y(3),pnxi(3),pnet(3) !local arrays

data pnxi/-1.0d00, 1.0d00, 0.0d00/
data pnet/-1.0d00, 0.0d00, 1.0d00/
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do ielem = 1,nelem !loop over number of elements
do inode = 1,3
in = intma(inode,ielem)
x(inode) = coord(1,in)
y(inode) = coord(2,in)

enddo !inode
x21 = x(2)-x(1)
x31 = x(3)-x(1)
y21 = y(2)-y(1)
y31 = y(3)-y(1)
rj = x21*y31-x31*y21
rj1 = 1.0d+00/rj
xix = y31*rj1
xiy = -x31*rj1
etx = -y21*rj1
ety = x21*rj1
do in = 1,2
rnxi = pnxi(in)
rnet = pnet(in)
geome(in,ielem) = xix*rnxi + etx*rnet
geome(in+3,ielem) = xiy*rnxi + ety*rnet

enddo !in
geome(3,ielem) = -( geome(1,ielem) + geome(2,ielem) )
geome(6,ielem) = -( geome(4,ielem) + geome(5,ielem) )
geome(7,ielem) = rj ! two times area

enddo !ielem
end

!-----------------------------------------------------------------

As stated previously, if the mesh is unchanged during the analysis, then the above
calculation is carried out only once, and all the values are stored in the arrays for use in
the main unit of the program.

10.2.4 Shape functions and their derivatives

For linear elements, an explicit calculation of the shape functions is not necessary as these
may be integrated directly. However, it is necessary to calculate the derivatives of the
shape functions, which are constant for a linear element. Therefore, these derivatives can
be evaluated at the preprocessing stage and stored in an appropriate array. For a linear
triangular element, we require six derivatives of the shape functions, that is,

∂Ni

∂x1
; ∂Nj

∂x1
; ∂Nk

∂x1
; ∂Ni

∂x2
; ∂Nj

∂x2
and

∂Nk

∂x2
(10.2)

These derivatives are calculated and stored in the first six entries of an array

geome(7,mxele)
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as mentioned in the previous subsection. Further details on the shape function derivatives
are given in Chapter 3. Once the derivatives of the shape functions are stored, a calculation
of the derivatives of any function/variable is straightforward. For example, the x1 and x2

derivatives of a nodal variable

unkno(2,ip)

within the elements are calculated as

do ie = 1,nelem !loop over elements
dpdx(ie) = 0.0d00 !x_1 derivative
dpdy(ie) = 0.0d00 !x_2 derivative
do i = 1,3
ip = intma(i,ie)
dpdx(ie) = dpdx(ie) + geome(i,ie)*unkno(2,ip)
dpdy(ie) = dpdy(ie) + geome(i+3,ie)*unkno(2,ip)

enddo !i
enddo !ie

These derivatives will be constant over an element for linear triangular elements.

10.2.5 Boundary normal calculation

The unit boundary outward normal, n, is shown in Figure 10.3. The components n1 and n2

are calculated and stored in an array at the preprocessing stage if the mesh is unchanged
during the calculation. In addition to the normal components, the boundary side lengths are
also computed and stored in the same array. The sample routine that calculates the normal
components and the side lengths is given below.

c------------------------------------------------------------------
subroutine getnor(mxpoi,mxbou,npoin,nboun,coord,isido,rsido)

c------------------------------------------------------------------
c Boundary normal calculation

implicit none

integer mxpoi, mxbou, npoin, nboun,ib,ipoi0,ipoi1
integer isido(4,mxbou)

k

n

n1

n2

i j

Figure 10.3 Outward normal from a boundary side
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real*8 dx,dy,rl
real*8 rsido(3,mxbou), coord(2,mxpoi)

call rfillm(rsido,3,nboun,0.0d00) !fill with zeros
do ib = 1, nboun !loop over boundary sides
ipoi0 = isido(1,ib) !first node of a side
ipoi1 = isido(2,ib) !second node of a side
dx = coord(1,ipoi1) - coord(1,ipoi0)
dy = coord(2,ipoi1) - coord(2,ipoi0)
rl = dsqrt(dx*dx+dy*dy) ! length of a side
rsido(1,ib) = dy/rl ! cos(theta)
rsido(2,ib) = -dx/rl ! sin(theta)
rsido(3,ib) = rl ! side length

enddo !ib
end

c-----------------------------------------------------------------

Readers are reminded that the above routine will be applicable only if the outer boundary
sides are numbered in an anticlockwise fashion for simply connected domains. For multiply
connected domains, the inner boundary sides should be numbered in a clockwise direction
in order to ensure that the normals point outwards in the analysis domain as shown in
Figure 10.4.

In the routine considered above, the term

rsido(3,mxbou)

is the array used to store the normal components and the side lengths. The first two entries
are the x1 and x2 components of the normals and the third entry is the side length.

10.2.6 Mass matrix and mass lumping

The calculation of the mass matrices is required at many stages during the solution of a
heat transfer problem. For example, all the transient terms, if solved in an explicit mode,
lead to mass matrices after spatial and temporal discretizations. These mass matrices can

n2

n1

n

Analysis domain
n2

n1

Figure 10.4 Multiply connected domain. Outward normal
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be ‘lumped’ using a standard row-summing approach if the steady state solution is the
only interest. In such situations, the mass matrix is lumped, inverted and stored in an array
during the preprocessing stage if the mesh is unchanged during the calculation. For details
of mass matrices and the lumping procedure, refer to Chapter 7. The following Fortran
routine gives the details of how the inverse of the mass matrix is calculated and then stored
into an array.

!-----------------------------------------------------------------
subroutine getmat(mxpoi,mxele,npoin,nelem,intma,geome,dmmat)

!-----------------------------------------------------------------
c This routine calculates inverse lumped mass matrix

c and stores in an array dmmat(mxpoi)

implicit none

integer mxpoi, mxele, npoin, nelem,ielem,inode,i,in
integer intma(3,mxele)

real*8 rj,rj6
real*8 geome(7,mxele), dmmat(mxpoi)

call rfillv(dmmat, npoin, 0.0d00) !fill with zeros

do ielem = 1, nelem
rj = geome(7,ielem) ! 2A
rj6 = rj/6.0d+00 ! A/3
do inode = 1, 3
in = intma(inode,ielem)
dmmat(in) = dmmat(in) + rj6 ! assembly

enddo !inode
enddo !ielem
do i = 1, npoin
dmmat(i) = 1.0d+00/dmmat(i) ! inverse

enddo !i
end

c-----------------------------------------------------------------

Note that

dmmat(mxpoi)

is the lumped and inverted mass matrix. Once stored, this may be used during the solution
update of an explicit solution procedure in the main program unit.

10.2.7 Implicit pressure or heat conduction matrix

Often, the pressure calculation in fluid dynamics or pure heat conduction calculations is
carried out using implicit procedures. For instance, the pressure Poisson equation of an
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incompressible flow calculation may have the following form:

−∂2p

∂x2
1

− ∂2p

∂x2
2

= 1

�t

(
∂u∗

1

∂x1
+ ∂u∗

2

∂x2

)
(10.3)

If a standard Galerkin weighting procedure and linear triangular elements are used, then
this will lead to the following discrete form of the LHS of the above equation (integration
by parts) for a triangular element.

1

4A


 b2

i bibj bibk

bjbi b2
j bj bk

bkbi bkbj b2
k



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

pi

pj

pk


+ 1

4A


 c2

i cicj cick

cj ci c2
j cj ck

ckci ckcj c2
k






pi

pj

pk


 (10.4)

where i, j and k are the three nodes of a triangle. The terms bi , bj and bk are the x1

derivatives of the shape functions and ci , cj and ck are the x2 derivatives of the shape
functions (see Chapters 3 and 7). The above equation needs to be assembled in order
to obtain a global LHS matrix. As mentioned previously, the derivatives of the shape
functions are constants and do not change if the mesh is fixed during the calculation. It is
therefore convenient to calculate the matrices of the above equation at the preprocessing
stage, so that they may be used whenever necessary in the main unit of the code. A
sample calculation of the pressure matrix for a banded (direct) matrix solver is given
below.

c-----------------------------------------------------------------
subroutine pstiff(mxpoi,mxele,mbw,npoin,nelem,nbw,intma,

& geome,theta,gsm)
c-----------------------------------------------------------------

c *** calculates global LHS matrix for pressure

implicit none

integer mxpoi,mxele,mbw,npoin,nelem,nbw,i

integer ie,ip1,ip2,ip3,j,ielem,i3,j3,ii,i1,jj,i2,j1,j2

integer intma(3,mxele)

real*8 area,thett

real*8 geome(7,mxele), theta(2), gsm(mbw,mxpoi)
real*8 s(3,3) !local

do i = 1, npoin
do j = 1, nbw
gsm(j,i) = 0.0d00 !initialise

enddo !j
enddo !j
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do ielem = 1, nelem
area = geome(7,ielem)*0.5d00 ! area of an element
thett = theta(1)*theta(2) ! theta parameters (see

! Chapter 7 for details)
do i = 1, 3
i3 = i + 3
do j = 1, 3
j3 = j + 3

c Element by element calculation of the shape function

c derivatives and summation
s(i,j) = thett*area*(geome(i,ielem)*geome(j,ielem)

& + geome(i3,ielem)*geome(j3,ielem))
enddo !j

enddo !i
do ii = 1, 3
i1 = intma(ii,ielem)
do jj = ii, 3

i2 = intma(jj,ielem)
if(i2.lt.i1) then !banded arrangement
j1 = i2
j2 = i1
j2 = j2 - j1 +1
gsm(j2,j1) = gsm(j2,j1) + s(jj,ii)!assembly

else
i2 = i2 - i1 + 1 !banded arrangement
gsm(i2,i1) = gsm(i2,i1) + s(jj,ii)!assembly

endif
enddo !jj

enddo !ii
enddo !ielem

end
c-----------------------------------------------------------------

In this case, the term

gsm(mbw,mxpoi)

is the global LHS matrix, which is unchanged during the calculation if the mesh is unaltered.

10.3 Main Unit

The following important list of parameters and quantities are normally available from the
preprocessing unit.

intma(3,mxele) - connectivity; coord(2,mxpoi) - nodal coordinates;
isido(4,mxbou) - boundary side information; geome(7,mxele) -
derivatives of shape functions and element area; rsido(3,mxbou) -
boundary side normals and its length; dmmat(mxpoi) - lumped and
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inversed mass matrix; gsm(mbw,mxpoi) - LHS matrix (only for
implicit solution); nelem - number of elements; npoin - number of
nodes, nboun - number of boundary sides

In addition to the above, several other quantities and parameters need to be either
read from an input file or developed within the preprocessing unit. Readers are asked to
consult the source codes and manuals, which are available to download, to understand these
additional auxiliary parameters.

The discussion on the main unit of the program is provided here by assuming that a
time-stepping approach is adopted for the solution of heat transfer problems and that the
above-listed parameters are available from the preprocessing unit.

10.3.1 Time-step calculation

As stated previously, if a steady state solution is obtained, via a time-stepping approach,
an appropriate stable time step should be employed in the calculations. The time-step
magnitude for a convection heat transfer problem may be stated as

�t = min

(
h

|u| ,
h2

2ν
,

h2

2α

)
(10.5)

where h is the element size, u is the velocity, ν is the kinematic viscosity of the fluid and
α is the thermal diffusivity. For Prandtl numbers of unity, the time-step values due to the
kinematic viscosity and thermal diffusivity are equal. If the Prandtl number is greater than
unity, then the time step calculated using the thermal diffusivity is greater than that of the
one due to the kinematic viscosity. Assuming that the magnitude of the thermal time step,
that is, h2/2α is greater than that of the viscous time step, then the following routine may
be utilized to calculate the value.

c-----------------------------------------------------------------
subroutine alotim( mxpoi, mxele, npoin, nelem, intma, geome,

& unkno, number, dtfix, ilots, csafm, ani, deltp,
& delte )

c-----------------------------------------------------------------

c calculates the critical time step for all the elements

c and nodes. iopt = -1 - fixed user specified global time step

c (dtfix). iopt = 0 - global time step calculated as minimum

c from all nodal values. iopt = 1 - local time step nodally

c varies

implicit none

integer mxpoi,mxele,npoin,nelem,ilots,ip,ie,ip1,ip2,ip3
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integer intma(3,mxele), number(mxpoi)

real*8 u1,u2,u3,v1,v2,v3,vn1,vn2,vn3,veln,anx,any
real*8 alen1,alen2,alen3,alen,dm,dtfix,csafm
real*8 ani,aloti1,aloti2,tiny

real*8 geome(7,mxele), unkno(4,mxpoi), deltp(mxpoi)
real*8 delte(mxele)

c global user specified fixed time step

if(ilots.le.-1) then
call rfillv(deltp, npoin, dtfix) !fill with fixed value
call rfillv(delte, nelem, dtfix) !fill with fixed value
return

endif

tiny = 0.1d-05
do ip = 1, npoin
deltp(ip) = 1.0d06 !nodal value initialise

enddo !ip
do ie = 1, nelem !loop over elements
ip1 = intma(1,ie) !node1
ip2 = intma(2,ie) !node1
ip3 = intma(3,ie) !node3
u1 = unkno(2,ip1) !u1 node1
u2 = unkno(2,ip2) !u1 node2
u3 = unkno(2,ip3) !u1 node3
v1 = unkno(3,ip1) !u2 node1
v2 = unkno(3,ip2) !u2 node2
v3 = unkno(3,ip3) !u2 node3
vn1 = dsqrt(u1**2 + v1**2) ! |V| node1
vn2 = dsqrt(u2**2 + v2**2) ! |V| node2
vn3 = dsqrt(u3**2 + v3**2) ! |V| node3
veln = max(vn1,vn2,vn3) ! Maximum |V|
anx = geome(1,ie)
any = geome(4,ie)
alen1 = 1.0d+00/dsqrt(anx**2 + any**2) !element size (h1)
anx = geome(2,ie)
any = geome(5,ie)
alen2 = 1.0d+00/dsqrt(anx**2 + any**2) !element size (h2)
anx = geome(3,ie)
any = geome(6,ie)
alen3 = 1.0d+00/dsqrt(anx**2 + any**2) !element size (h3)
alen = min(alen1,alen2,alen3) !minimum h

c local time step

aloti1 = alen/(veln+tiny) ! convection limit
aloti2 = 0.5*alen**2/ani ! viscous limit
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deltp(ip1) = min(deltp(ip1), aloti1,aloti2) !nodes
deltp(ip2) = min(deltp(ip2), aloti1,aloti2) !nodes
deltp(ip3) = min(deltp(ip3), aloti1,aloti2) !nodes
delte(ie) = min(deltp(ip3), aloti1,aloti2) !elements

enddo !ie
do ip = 1,npoin

deltp(ip) = csafm*deltp(ip) !multiply by safety factor
enddo !ip
do ie = 1,nelem

delte(ie) = csafm*delte(ie) !multiply by safety factor
enddo !ie

c global minimum time step

if(ilots.eq.0)then
dm = 5.0d03
do ip = 1,npoin

dm = min(deltp(ip),dm)
enddo !ip
do ip = 1, npoin

deltp(ip) = dm
enddo !ip
do ie = 1, nelem

delte(ie) = dm
enddo!ie
endif
end

c-----------------------------------------------------------------

The element size at a node is calculated in the routine using the sizes represented by
Figure 10.5 as

hi = min(h1, h2, h3, h4, h5) (10.6)

Again, the above element size will be unchanged if the mesh is unaltered during a
calculation. It is therefore possible to calculate and store the element sizes into an array
at the preprocessing stage. A more accurate representation of an element size is possible
by determining the element size in the streamline direction. However, such a calculation

h4 h5

i h1

h2
h3

Figure 10.5 Element size calculation
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will lead to a variation in the element size at each time step, if a time-stepping scheme is
employed, or it will vary at each iteration if a steady state equation system with an iterative
procedure is employed.

10.3.2 Element loop and assembly

A loop over the number of elements is the commonly employed form of LHS matrix/RHS
vector construction in finite element codes. The assembly process is normally associated
with the element loop. An example of such a loop, when assembling the full viscous terms
of the momentum equations, is

do ia = 1, nelem !loop over number of elements
do lok = 1, 3!loop over three nodes of an element
in = intma(lok,ia) !nodes of an element
lok1 = lok + 3
velo1 = unkno(2,in) ! velocity component1
velo2 = unkno(3,in) ! velocity component2
sigxx(ia) = sigxx(ia) + ( ani )*

& ( geome(lok,ia)*2.0*velo1 ) !stress 11
sigyy(ia) = sigyy(ia) + ( ani )*

& ( geome(lok1,ia)*2.0*velo2 )!stress 22
sigxy(ia) = sigxy(ia) + ( ani )*

& ( geome(lok,ia)*velo2
& + geome(lok1,ia)*velo1 ) !stress 12

enddo !lok
do lok = 1, 3

lok1 = lok + 3
rh1p(1,lok) = -geome(7,ia)*( sigxx(ia)*geome(lok,ia)

& + sigxy(ia)*geome(lok1,ia) )*0.5d00
rh1p(2,lok) = -geome(7,ia)*( sigxy(ia)*geome(lok,ia)

& + sigyy(ia)*geome(lok1,ia) )*0.5d00
enddo !lok
do lok = 1, 3

in = intma(lok,ia)
do ja = 1, 2
ja1 = ja + 1
rhs0(ja1,in) = rhs0(ja1,in) + rh1p(ja,lok) !assembly

enddo !ja
enddo !lok

enddo !ia

The stress components, τ11, τ22 and τ12 are determined element by element and assem-
bled into the RHS vector

rhs0(4,mxpoi)

Both the stress arrays

sigxx(mxele); sigyy(mxele); sigxy(mxele)
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and the RHS vector array have to be initialized to a value of zero at every time step of the
calculation.

10.3.3 Updating solution

Two types of solution updating are possible when a time-stepping procedure is employed.
In the first type, a solution is updated after solving a simultaneous system of equations.
In the second type, the solution is updated by multiplying a lumped and inverted mass
matrix. In the latter procedure, the lumped mass matrix is a diagonal matrix and requires
no simultaneous solution, as shown in the following portion of the code for the momentum
equations.

c add advection and diffusion RHS and multiply

c by inversed mass

do ip = 1, npoin ! nodal loop
dt = dmmat(ip)
rhs2(2,ip) = ( rhs2(2,ip) + rhs0(2,ip) )*dt
rhs2(3,ip) = ( rhs2(3,ip) + rhs0(3,ip) )*dt

enddo !ip

c update the solution.

do ip = 1, npoin
unkno(2,ip) = unkno(2,ip) + deltp(ip)*rhs2(2,ip) !update u_1
unkno(3,ip) = unkno(3,ip) + deltp(ip)*rhs2(3,ip) !update u_2

enddo !ip

Note that the time step is multiplied only at the end. The solution in the above part of
the routine is updated as follows:

un+1
1 = un

1 + �t ∗ RHS ∗ dmmat (10.7)

The matrix solution procedures for updating the analysis is carried out by either a
direct or an iterative solver. Direct solvers, such as the Gaussian elimination technique are
employed when the simultaneous system is small and structured. However, for unstructured
meshes and large systems, it is difficult to employ such direct solvers. It is therefore
necessary to employ iterative solvers, for example, a conjugate gradient solver, in such
situations. A typical LHS matrix is discussed in Section 10.2.7 for a banded direct solver.
An RHS vector needs to be constructed before the solver can be used to obtain a solution.
The RHS vector is constructed at each time step and is subjected to boundary conditions
during the simultaneous solution procedure (see Chapter 3). The complete details of the
solvers used are available, along with the source codes, from the authors’ web sites.
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10.3.4 Boundary conditions

The boundary conditions are imposed after each time step by allotting an appropriate
boundary condition code to a side (see mesh data). For instance, the no velocity flux
condition, or normal velocity zero condition, is imposed using the following routine during
an explicit calculation. Note that the boundary code for such a condition is assumed to
be 4.

c------------------------------------------------------------
subroutine corsym( mxpoi, mxbou, npoin, nboun, unkno,

& isido, rsido )
c------------------------------------------------------------

c *** Applies the zero velocity flux boundary conditions

implicit none

integer mxpoi,mxbou,npoin,nboun,is,in,ip

integer isido(4,mxbou)

real*8 anx,any,us

real*8 unkno(4,mxpoi), rsido(3,mxbou)

do is = 1, nboun
if(isido(4,is).eq.4) then
anx = rsido(1,is) !boundary normal
any = rsido(2,is) !boundary normal
do in = 1, 2
ip = isido(in,is)
us = -unkno(2,ip)*any + unkno(3,ip)*anx
unkno(2,ip) = - us*any
unkno(3,ip) = us*anx

enddo !in
endif

enddo !is
end

c------------------------------------------------------------

Note that

unkno(4,mxpoi)

is the unknown array. The first entry is the temperature, the second is the velocity component
u1, the third is the velocity component u2 and the fourth is the pressure. As seen in the
above routine, the ‘no mass flux’ condition is applied only to the velocity components.
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10.3.5 Monitoring steady state

The steady state may be monitored via a fixed prescribed tolerance of the difference in a
variable between two consecutive time steps. For example,

max(φn+1
i − φn

i ) ≤ 10−10 (10.8)

where φ is any variable such as velocity components, temperature etc. and the subscript i

varies from 1 to the total number of nodes. Other ways of monitoring whether the steady
state has been reached are discussed in Chapter 7. The following portion of the code
explains how such a steady state check is carried out between two consecutive time steps.
In addition to screening the maximum difference, the following section of code stores the
node at which such a maximum occurs.

do ip = 1, npoin
adel1 = unkno(1,ip) - unkn1(1,ip) !temperature
adel2 = unkno(2,ip) - unkn1(2,ip) !u_1
adel3 = unkno(3,ip) - unkn1(3,ip) !u_2
adel4 = pres1(ip) - pres(ip) !pressure
cder = dabs(adel1)
if(cder.gt.ha(1)) then
icount(1) = ip !node
ha(1) = cder !maximum value

endif
cder = dabs(adel2)
if(cder.gt.ha(2)) then
icount(2) = ip !node
ha(2) = cder !maximum value

endif
cder = dabs(adel3)
if(cder.gt.ha(3)) then
icount(3) = ip !node
ha(3) = cder !maximum value

endif
cder = dabs(adel4)
if(cder.gt.ha(4)) then
icount(4) = ip !node
ha(4) = cder !maximum value

endif
enddo !ip
print*, (ha(ia),ia = 1,4) !printing on screen max value
print*, (icount(ia),ia = 1,4) !printing on screen the node

Note that the array

unkn1(4,mxpoi)

stores the variables at the previous time step n. The array

unkno(4,mxpoi)

stores the variable values at the current time step of n + 1. The maximum difference
between these two time levels forms the criterion for the steady state condition.
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10.4 Postprocessing

The postprocessing unit is mainly employed after a solution to a problem has been achieved.
An interface to another graphical package may be linked to the main program unit so that
the output from the main unit can be directly loaded into a postprocessor to visualize the
data. For beginners, it is important to assess the accuracy of the calculations by investigating
the qualitative distribution of any quantity. The choice of the graphical package is left to
the user. The source code available on the web includes interfaces to standard packages.

10.4.1 Interpolation of data

It is often necessary to plot the quantities along a straight line within a domain or at an
arbitrary point within a domain. If the nodes are not placed along the line of interest, or no
node coincides with the point of interest, the variable required has to be interpolated using
the shape functions. Such an interpolation routine may be used either as part of the main
program unit or may be employed externally.

Once the data is obtained via interpolation, the plots may be generated using any
standard package. Plots of interest can be of a spatial variation and/or a temporal variation
of the fluid flow and heat transfer variables.

10.5 Summary

In this chapter, we have provided the readers with a brief introduction to the computer
implementation of the finite element method for heat and fluid flow applications. Sev-
eral advanced issues, such as the edge-based data structure, parallel implementation and
multi-grid acceleration procedure have not been discussed in this chapter. However, some
appropriate references are provided for those who would like to read about such advanced
topics. Further details on the programming and how to use the source codes are available
from the authors’ web sites.
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Appendix A

Green’s Lemma

Green’s lemma states that for differentiable functions α1 and α2, we can write (for a
two-dimensional problem)∫




α1
∂α2

∂x1
d
 = −

∫



∂α1

∂x1
α2 d
 +

∫
	

α1α2n1 d	 (A.1)

Similarly ∫



α1
∂α2

∂x2
d
 = −

∫



∂α1

∂x2
α2 d
 +

∫
	

α1α2n2 d	 (A.2)

where n1 and n2 are the components of the outward normals on the enclosed curve 	 (see
Figure A.1) and 
 is the two-dimensional domain. Let us consider the integration of a
second-order term weighted by the shape function. The following form is common in finite
element formulations: ∫




Nk

∂2T

∂x2
1

d
 (A.3)

Ω

Γ

n1

n2

Figure A.1 Domain, boundary and outward normals
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Applying Green’s lemma, the above equation becomes

−
∫




∂Nk

∂x1

∂T

∂x1
d
 +

∫
	

Nk

∂T

∂x1
n1 d	 (A.4)

In a similar fashion, the x2 direction can also be simplified using Green’s lemma.
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Integration Formulae

B.1 Linear Triangles

Let i, j and k be the nodes of a triangular element. Integrating over the triangular area
gives

A =
∫

dx1 dx2 = 1

2

∣∣∣∣∣∣
1 x1i x2i

1 x1j x2j

1 x1k x2k

∣∣∣∣∣∣ (B.1)

where A is the area of the triangle. For a linear triangular element (shape functions are
same as local coordinates), the integration of the shape functions can be written as∫




Na
i Nb

j Nc
k d
 = a!b!c!2A

(a + b + c + 2)!
(B.2)

On the boundaries ∫
	

Na
i Nb

j d	 = a!b!l

(a + b + 1)!
(B.3)

Note that i –j is assumed to be the boundary side. The above equation is identical to
the integration formula of a one-dimensional linear element. In the above equation, l is the
length of a boundary side.

B.2 Linear Tetrahedron

Let i, j, k and m be the nodes of a linear tetrahedron element. Integrating over the volume
gives
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V =
∫

dx1 dx2 dx3 = 1

6

∣∣∣∣∣∣∣∣
1 x1i x2i x3i

1 x1j x2j x3j

1 x1k x2k x3k

1 x1m x2m x3m

∣∣∣∣∣∣∣∣
(B.4)

where V is the volume of a tetrahedron. For linear shape functions, the integration formula
can be written as ∫




Na
i Nb

j Nc
k Nd

m d
 = a!b!c!d!6V

(a + b + c + 3)!
(B.5)

On the boundaries ∫
	

Na
i Nb

j Nc
k d	 = a!b!c!2A

(a + b + c + 2)!
(B.6)

Note that the above formula is identical to the integration formula of triangular elements
within the domain. In the above equation, A is the area of a triangular face.
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Finite Element Assembly
Procedure

Consider the two-dimensional linear triangular elements shown in Figure C.1. Let us assume
the following elemental LHS matrix for the variable φ

For element 1,

K1 =

a11 a12 a13

a21 a22 a23

a31 a32 a33


 (C.1)

and for element 2,

K2 =

b22 b23 b24

b32 b33 b34

b42 b43 b44


 (C.2)

The elemental RHS vectors are the following:
For element 1,

f1 =



c1

c2

c3


 (C.3)

and for element 2,

f2 =



d2

d3

d4


 (C.4)
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1

22

1

3

4

Figure C.1 A domain with two linear triangular elements

Assembling the above elemental contributions gives the following global equation:

[K]{φ} = {f} (C.5)

where [K] and {f} are the global LHS matrix and RHS vector respectively and {φ} is the
unknown vector for the system shown in Figure C.1 as follows:

{φ} =




φ1

φ2

φ3

φ4


 (C.6)

The global LHS matrix is assembled as follows. The entries with the same subscripts
in Equations C.1 and C.2 are added together to form an assembled global LHS matrix,
that is,

[K] =




a11 a12 a13 0
a21 a22 + b22 a23 + b23 b24

a31 a32 + b32 a33 + b33 b34

0 b42 b43 b44


 (C.7)

In a similar fashion, the RHS vector is assembled as

{f} =




c1

c2 + d2

c3 + d3

d4


 (C.8)

The global system of equations is written as follows:




a11 a12 a13 0
a21 a22 + b22 a23 + b23 b24

a31 a32 + b32 a33 + b33 b34

0 b42 b43 b44






φ1

φ2

φ3

φ4


 =




c1

c2 + d2

c3 + d3

d4


 (C.9)
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As seen, there are four simultaneous equations, each of them associated with a node.
The first equation, which is associated with node 1, is

a11φ1 + a12φ2 + a13φ3 = c1 (C.10)

In the above equation, the contributions are from node 1 and the nodes connected to
node 1. As seen, node 1 receives contributions from 2 and 3. Similarly, the second nodal
equation receives contributions from all other nodes, which is obvious from Equation C.9.
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Simplified Form of the
Navier–Stokes Equations

To derive the Navier–Stokes equations in their non-conservative form, we start with the
conservative form.

Conservation of mass:

∂ρ

∂t
+ ∂(ρui)

∂xi

= ∂ρ

∂t
+ ρ

∂ui

∂xi

+ ui

∂ρ

∂xi

= 0 (D.1)

Conservation of momentum:

∂(ρui)

∂t
+ ∂(ujρui)

∂xj

− ∂τij

∂xj

+ ∂p

∂xi

= 0 (D.2)

Conservation of energy:

∂(ρE)

∂t
+ ∂(ujρE)

∂xj

− ∂

∂xi

(
k

∂T

∂xi

)
+ ∂(ujp)

∂xj

− ∂(τij uj )

∂xj

= 0 (D.3)

Rewriting the momentum equation with terms differentiated as

ρ
∂ui

∂t
+ ui

(
∂ρ

∂t
+ ρ

∂uj

∂xj

+ uj

∂ρ

∂xj

)
+ ρuj

∂ui

∂xj

− ∂τij

∂xj

+ ∂p

∂xi

= 0 (D.4)

and substituting the equation of mass conservation (Equation D.1) into the above equation
gives the reduced momentum equation, that is,

∂ui

∂t
+ uj

∂ui

∂xj

− 1

ρ

∂τij

∂xj

+ 1

ρ

∂p

∂xi

= 0 (D.5)

The above momentum equation can be further simplified if the fluid is incompressible.
For an incompressible fluid, the conservation of mass equation becomes

∂ui

∂xi

= 0 (D.6)
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The deviatoric stresses in Equation D.5 are written as

τij = µ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
(D.7)

Note that the last term in the above equation is zero from the continuity equation for
incompressible flows. The deviatoric stresses become

τij = µ

(
∂ui

∂xj

+ ∂uj

∂xi

)
(D.8)

Substituting the above equation into Equation D.5, we have (assuming µ is a constant)

∂ui

∂t
+ uj

∂ui

∂xj

− µ

ρ

∂

∂xj

(
∂ui

∂xj

+ ∂uj

∂xi

)
+ 1

ρ

∂p

∂xi

= 0 (D.9)

If we substitute i = 1 and j = 1, 2, we get the x1 component of the momentum equation
as (in two dimensions)

∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
= − 1

ρ

∂p

∂x1
+ 2ν

∂2u1

∂x2
1

+ ν
∂2u1

∂x2
2

+ ν
∂

∂x2

(
∂u2

∂x1

)
(D.10)

Rewriting the above equation as

∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
= − 1

ρ

∂p

∂x1
+ ν

∂2u1

∂x2
1

+ ν
∂2u1

∂x2
2

+ ν
∂

∂x1

(
∂u1

∂x1
+ ∂u2

∂x2

)
(D.11)

Applying the conservation of mass, we get

∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
= − 1

ρ

∂p

∂x1
+ ν

∂2u1

∂x2
1

+ ν
∂2u1

∂x2
2

(D.12)

In a similar fashion, the other components of the momentum and energy equations can
be simplified.
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Navier–Stokes equations 175–83
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Neumann (boundary) conditions 13, 211
Newton’s law of cooling 3, 214
nodal points 14
nodes, meaning of term in finite element

method 39, 40
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220–3
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227–30
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152–4

boundary conditions 153
Galerkin method 153–4
governing equations 152–3
initial condition 153
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analysis 155
quadratic element 42, 45–8

exercises on 98, 99
shape functions 47–8
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inverse problem 168–70
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conduction 102–25

examples 102
plane walls 102–15

composite wall 103–4
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finite element discretization

105–7
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linear elements 108–12
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114–15
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quadratic elements 112–14
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with varying cross-sectional area

107–8
radial heat flow in cylinders

115–20
exercises on 125

one-dimensional transient heat
conduction 154–60

packed beds, flow through 255
Peclet number 185, 195
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phase change problems 164–7

enthalpy formulation 165–7
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phase change problems (continued )
example calculations 166–7
exercise on 172
governing equations 164–5

pipe network
example fluid flow calculations 24
exercise(s) 31, 33, 34–5
laminar flow in 22–4
turbulent flow in 24–5

plastic ball grid array (PBGA) package
systems, thermal analysis of
284–6
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93
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convection in 240–64
forced convection 255–6
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fluid flow in 240–3
generalized approach 243–7
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CBS scheme used to solve 247–53
discretization procedure 247–53

spatial discretization 249–52
temporal discretization 247–9

limiting cases 247
non-dimensional scaling 245–7
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Prandtl mixing length 233
Prandtl number 185, 246

turbulent 233
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cooling of 286–94
exercise on 36
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quadratic element 42, 45–8
exercises on 98, 99
shape functions 47–8
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internal heat source 112–14
quadratic hexahedral element 73–4

quadratic tetrahedral element 72–3
shape functions 72–3

quadratic triangular element 54–7
shape functions 55–6

quadrilateral elements 57–62
example calculations 60–2
isoparametric mapping from 62
shape functions 58–9

quasi-implicit (QI) time-stepping
scheme(s) 253

radiation heat transfer 3
in transient heat transfer problem

29, 30–1
Rayleigh number 187, 224, 246
Rayleigh–Ritz method 78–80
rectangular finite element 57–62

example calculations 60–2
exercise on 99
non-dimensional coordinates 59
shape functions 58–9, 137
two-dimensional heat conduction

problems 136–9
Reynolds Averaged Navier–Stokes

(RANS) turbulence modelling
approach 230, 231–2

Reynolds number 174, 185, 246
Reynolds stress 232
Reynolds Transport Theorem 175
Richardson number 187
Ritz method 76–7

compared with exact solution 78

semi-implicit time-stepping scheme 157,
162, 252–3

shape function derivatives 59, 63, 70, 71
computer code for 304–5

shape function matrix 43
shape functions

isoparametric elements 63–4, 67–8
example calculations 66–7, 69

one-dimensional finite elements
line element 43–4
quadratic element 47–8
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three-dimensional elements 72–3,
73–4

two-dimensional finite elements
cubic (10-node) triangular

element 56–7
linear triangular element 50
quadratic triangular element

55–6
quadrilateral elements 58–9
rectangular elements 58–9

shell-and-tube heat exchanger 27–9
Silvester’s triple-index numbering

scheme 55
simplex element 48

see also two-dimensional finite
elements, linear triangular
element

solar applications 5–7
solidification see phase change problems
space vehicle heat shields 126
sphere, forced convection flow past

221–3
spherical coordinate system, heat

conduction equation 12
spherical heat sources on wall, forced

convection heat transfer
287–94

square enclosure
natural convection in 224–6

fluid-saturated constant-porosity
medium 258–61

fluid-saturated variable-porosity
medium 256–8

stainless steel, thermal conductivity 4
static condensation procedure 114–15
steady-state flow problems 265–76
steady-state heat conduction

axisymmetric 142–7
multi-dimensional 12, 126–49
one-dimensional 12, 102–25
three-dimensional 141–2
two-dimensional 127–41

Stefan–Boltzmann constant 3, 30
Stefan–Boltzmann Law 3–4

stiffness matrix
elemental 41

composite wall 105
rectangular fin 95
tapered fin 122
two-dimensional plane problems

129, 131, 134–5
global 41

tapered fin 121
two-dimensional plane problems

137, 138
stream function 216–17
streamlines 216

natural convection in square
enclosure 226

Taylor–Galerkin (TG) scheme 188
Taylor series expansion 156, 169, 175,

178, 182
tetrahedron elements 70–3, 70

linear 70–2
applications 141, 222
integration formulae for 321

quadratic 72–3
shape functions 71

volume coordinate system for 72
thermal conductivity

as tensor 11
values listed for various materials 4

thermal diffusivity 12, 183
thermal potential difference 104
thermal resistance(s)

in composite wall 104
in PBGA electronic package 285

thermodynamics, first law 5
three-dimensional finite elements 70–4

hexahedral element 73–4
tetrahedral element 70–3

applications 141, 222
integration formulae for 321–2

three-dimensional meshes, generation of
222

three-dimensional steady-state heat
conduction problems 141–2

examples 126
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time-step calculation in CBS scheme
210–11

computer code for 310–13
time-stepping schemes 157

stability 161–2
see also characteristic based split

(CBS) scheme
transient convection–diffusion problem

187–200
transient flow, isothermal flow 276–80
transient heat conduction analysis

150–72
exercises on 170–1
lumped heat capacity method

150–2
multi-dimensional problems 162–4
numerical solution 152–4
one-dimensional problems 154–61

transient heat transfer problem
29–31

trial functions 76
triangular elements

area coordinates for 52–4
coordinate transformation of 67–8
isoparametric mapping from 62
linear 48–52

in computer code implementation
302, 303

in convection heat transfer 201
example calculations 50–2
exercise on 99
integration formulae for 321
shape functions 50
in transient heat conduction

analysis 159
in two-dimensional heat

conduction problems 127–36
quadratic 54–7

coordinate transformation of
67–8

shape functions 55–6
turbulent eddy viscosity 232
turbulent flow

convection heat transfer 230–4

result for two-dimensional
rectangular channel 233–4

solution procedure 233
models 230–2
in pipe network 24–5
Reynolds number criterion 174

two-dimensional convection–diffusion
equations 195–200

two-dimensional finite elements
cubic (10-node) triangular element

56–7
shape functions 56–7

linear triangular element 48–52
in convection heat transfer

201
example calculations 50–2
exercise on 99
integration formulae for 321
shape functions 50
in transient heat conduction

analysis 159
in two-dimensional heat

conduction problems 127–36
quadratic triangular element 54–7

shape functions 55–6
quadrilateral elements 57–62

example calculations 60–2
exercises on 99
shape functions 58–9

rectangular element 57–62
example calculations 60–2
exercise on 99
non-dimensional coordinates 59
shape functions 58–9

two-dimensional plane steady-state heat
conduction problems 127–39

examples 126
exercises on 147–8
plate with linearly varying

thickness 139–41
exercise on 148

with rectangular elements 136–9
example calculations 138–9
exercises on 147
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with triangular elements
127–36

example calculations 130–6
exercises on 147

unstructured meshes 127
application(s) in examples 132,

167, 266, 267
computer code for generation of

301–2
upwinding schemes 188

variational method 78–80
compared with exact solution 80,

87
for three-dimensional steady-state

heat conduction 88–91
viscous drag force 216
vortex shedding past cylinder 212,

277–80

water, thermal conductivity 4
water-processing plant, fluid flow in,

exercise on 295–6

Index compiled by Paul Nash

weak formulation, as variational
formulation as 80

weighted residuals method(s) 80–4
collocation method 81–2

compared with exact solution 84,
87

compared with exact solution 84,
87

Galerkin method 83, 85–7
compared with exact solution 84,

87
in transient heat conduction

analysis 153–4, 161
least-squares method 83–4

compared with exact solution 84,
87

sub-domain method 82–3
compared with exact solution 84,

87
welding, phase changes during 164
wood, thermal conductivity 4

zone melting, phase changes during
164
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